ﻻ يوجد ملخص باللغة العربية
We study four problems namely, Campbells source coding problem, Arikans guessing problem, Huieihel et al.s memoryless guessing problem, and Bunte and Lapidoths task partitioning problem. We observe a close relationship among these problems. In all these problems, the objective is to minimize moments of some functions of random variables, and Renyi entropy and Sundaresans divergence arise as optimal solutions. This motivates us to establish a connection among these four problems. In this paper, we study a more general problem and show that R{e}nyi and Shannon entropies arise as its solution. We show that the problems on source coding, guessing and task partitioning are particular instances of this general optimization problem, and derive the lower bounds using this framework. We also refine some known results and present new results for mismatched version of these problems using a unified approach. We strongly feel that this generalization would, in addition to help in understanding the similarities and distinctiveness of these problems, also help to solve any new problem that falls in this framework.
This paper establishes a close relationship among the four information theoretic problems, namely Campbell source coding, Arikan guessing, Huleihel et al. memoryless guessing and Bunte and Lapidoth tasks partitioning problems. We first show that the
This paper provides upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available. These moments quantify the number of guesses required for correctly identifying the
Stationary memoryless sources produce two correlated random sequences $X^n$ and $Y^n$. A guesser seeks to recover $X^n$ in two stages, by first guessing $Y^n$ and then $X^n$. The contributions of this work are twofold: (1) We characterize the least a
Batched network coding is a variation of random linear network coding which has low computational and storage costs. In order to adapt to random fluctuations in the number of erasures in individual batches, it is not optimal to recode and transmit th
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis