ﻻ يوجد ملخص باللغة العربية
Right-handed neutrinos in supersymmetric models can act as the source of lepton flavor violation (LFV). We present experimental implications of lepton flavor-violating processes within a supersymmetric type-I seesaw framework in the three-extra-parameter non-universal Higgs model (NUHM3) for large (PMNS-like) and small (CKM-like) Yukawa mixing scenarios. We highlight LFV predictions for the natural (low $Delta_{rm EW}$) portion of parameter space. Our numerical analysis includes full 2-loop renormalization group running effects for the three neutrino masses and mass matrices. We show the projected discovery reach of various LFV experiments ($textit{i.e.}$ Mu2e, Mu3e, MEG-II, Belle-II), and specify regions that have already been excluded by the LHC searches. Our results depend strongly on whether one has a normal sneutrino hierarchy (NSH) or an inverted sneutrino hierarchy (ISH). Natural SUSY with a NSH is already excluded by MEG-2013 results while large portions of ISH have been or will soon be tested. However, LFV processes from natural SUSY with small Yukawa mixing and an ISH seem below any projected sensitivities. A substantial amount of the remaining parameter space of models with large PMNS-like sneutrino mixing will be probed by Mu2e and MEG-II experiments whereas small, CKM-like Yukawa mixing predicts LFV decays which can hide from LFV experiments.
We analyze the phenomenological consequences of embedding a flavor symmetry based on the groups $A_5$ and CP in a supersymmetric framework. We concentrate on the leptonic sector, where two different residual symmetries are assumed to be conserved at
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the
Flavor symmetric model is one of the attractive Beyond Standard Models (BSMs) to reveal the flavor structure of the Standard Model (SM). A lot of efforts have been put into the model building and we find many kinds of flavor symmetries and setups are
Till today lepton flavor violation has not been observed in processes involving charged leptons. Hence, a search for it is under hot pursuit both in theories and experiments. In our current work, we investigate the rates of rare decay processes such
Here we update the predictions for lepton flavour violating tau and muon decays, $l_j to l_i gamma$, $l_j to 3 l_i$, and $mu-e$ conversion in nuclei. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standa