ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending light WIMP searches to single scintillation photons in LUX

115   0   0.0 ( 0 )
 نشر من قبل Nellie Marangou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a 2-fold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV/c$^2$ WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments.



قيم البحث

اقرأ أيضاً

We consider analysis targets at the International Linear Collider in which only a single photon can be observed. For such processes, we have developed a method which uses likelihood distributions using the full event information (photon energy and an gle). The method was applied to a search for neutralino pair production with a photon from initial state radiation (ISR) in the case of supergravity in which the neutralino is the lightest supersymmetric particle. We determine the cross section required to observe the neutralino pair production with ISR as a function of the neutralino mass in the range of 100 to 250 GeV.
Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earths motion in the halo. Observation of such features can provide generic evidence for detection of dar k matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.3$pm$0.2~cpd/keV$_{text{ee}}$/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26~keV$_{text{ee}}$. Between 2 and 6~keV$_{text{ee}}$, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2$sigma$ tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2~cpd/keV$_{text{ee}}$/tonne amplitude between 2 and 6~keV$_{text{ee}}$.
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active m ass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV/c^2, WIMP-nucleon spin-independent cross sections above 2.2e-46 cm^2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1e-46 cm^2 at 50 GeV/c^2.
LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6 tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above $1.6 times 10^{-48}$ cm$^{2}$ for a 40 $mathrm{GeV}/c^{2}$ mass WIMP. Additionally, a $5sigma$ discovery potential is projected reaching cross sections below the existing and projected exclusion limits of similar experiments that are currently operating. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.7 times 10^{-43}$ cm$^{2}$ ($8.1 times 10^{-42}$ cm$^{2}$) for a 40 $mathrm{GeV}/c^{2}$ mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.
179 - K. Abe , K. Hieda , K. Hiraide 2012
A search for light dark matter using low-threshold data from the single phase liquid xenon scintillation detector XMASS, has been conducted. Using the entire 835 kg inner volume as target, the analysis threshold can be lowered to 0.3 keVee (electron- equivalent) to search for light dark matter. With low-threshold data corresponding to a 5591.4 kg$cdot$day exposure of the detector and without discriminating between nuclear-recoil and electronic events, XMASS excludes part of the parameter space favored by other experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا