ﻻ يوجد ملخص باللغة العربية
When two quantum systems are coupled via a mediator, their dynamics has traces of non-classical properties of the mediator. We show how this observation can be effectively utilised to study the quantum nature of materials without well-established structure. A concrete example considered is Sr$_{14}$Cu$_{24}$O$_{41}$. Measurements of low temperature magnetic and thermal properties of this compound were explained with long-range coupling of unpaired spins through dimerised spin chains. We first show that the required coupling is not provided by the spin chain alone and give alternative compact two-dimensional spin structures compatible with the experimental results. Then we argue that any mediator between the unpaired spins must share with them quantum correlations in the form of quantum discord and in many cases quantum entanglement. In conclusion, present data witnesses quantum mediators between unpaired spins in Sr$_{14}$Cu$_{24}$O$_{41}$.
The low energy lattice dynamics of the quasi-periodic spin-ladder cuprate Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ are investigated using terahertz frequency synchrotron radiation. A high density of low-lying optical excitations are present in the 1-3 THz
Using far-infrared spectroscopy we have studied the magnetic field and temperature dependence of the spin gap modes in the chains of Sr$_{14}$Cu$_{24}$O$_{41}$. Two triplet modes T$_1$ and T$_2$ were found in the center of the Brillouin zone at $Delt
We report an electron spin resonance (ESR) study of single crystals of the spin-chain spin-ladder compound (Sr,La,Ca)_{14}Cu_{24}O_{41}. The data suggest that in intrinsically hole doped Sr_{14-x}Ca_xCu_{24}O_{41} only a small amount of holes is tran
Within the two-leg $t$-J ladder, the spin dynamics of the pressure-induced two-leg ladder cuprate superconductor Sr$_{14-x}$Ca$_{x}$Cu$_{24}$O$_{41}$ is studied based on the kinetic energy driven superconducting mechanism. It is shown that in the pre
The knowledge of the charge carrier distribution among the different orbitals of Cu and O is a precondition for the understanding of the physical properties of various Cu-O frameworks. We employ electron energy-loss spectroscopy to elucidate the char