ﻻ يوجد ملخص باللغة العربية
We study the evolution of correlation functions of local fields in a two-dimensional quantum field theory under the $lambda Tbar T$ deformation, suitably regularized. We show that this may be viewed in terms of the evolution of each field, with a Dirac-like string being attached at each infinitesimal step. The deformation then acts as a derivation on the whole operator algebra, satisfying the Leibniz rule. We derive an explicit equation which allows for the analysis of UV divergences, which may be absorbed into a non-local field renormalization to give correlation functions which are UV finite to all orders, satisfying a (deformed) operator product expansion and a Callan-Symanzik equation. We solve this in the case of a deformed CFT, showing that the Fourier-transformed renormalized two-point functions behave as $k^{2Delta+2lambda k^2}$, where $Delta$ is their IR conformal dimension. We discuss in detail deformed Noether currents, including the energy-momentum tensor, and show that, although they also become non-local, when suitably improved they remain finite, conserved and satisfy the expected Ward identities. Finally, we discuss how the equivalence of the $Tbar T$ deformation to a state-dependent coordinate transformation emerges in this picture.
We consider a gravitational perturbation of the Jackiw-Teitelboim (JT) gravity with an arbitrary dilaton potential and study the condition under which the quadratic action can be seen as a $Tbar{T}$-deformation of the matter action. As a special case
In this paper, we present our study on the $Tbar{T}$-deformation of non-relativistic complex scalar field theory. We find the closed form of the deformed Lagrangian by using the perturbation and the method of characteristics. Furthermore we compute t
We study the $Tbar T$ deformation on a multi-quantum mechanical systems. By introducing the dynamical coordinate transformation, we obtain the deformed theory as well as the solution. We further study the thermo-field-double state under the $Tbar T$
We continue the study of a recently proposed solvable irrelevant deformation of an AdS$_3$/CFT$_2$ correspondence that leads in the UV to a theory with Hagedorn spectrum. This can be thought of as a single trace analog of the $Tbar{T}$-deformation of
We study non-perturbative quantum aspects of $Tbar{T}$-deformation of a free $O(N)$ vector model by employing the large $N$ limit. It is shown that bound states of the original field appear and inevitably become negative-norm states. In particular, t