ترغب بنشر مسار تعليمي؟ اضغط هنا

Dominance, Sharing, and Assessment in an Iterated Hawk--Dove Game

94   0   0.0 ( 0 )
 نشر من قبل Mason A. Porter
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Animals use a wide variety of strategies to reduce or avoid aggression in conflicts over resources. These strategies range from sharing resources without outward signs of conflict to the development of dominance hierarchies, in which initial fighting is followed by the submission of subordinates. Although models have been developed to analyze specific strategies for resolving conflicts over resources, little work has focused on trying to understand why particular strategies are more likely to arise in certain situations. In this paper, we use a model based on an iterated Hawk--Dove game to analyze how resource holding potentials (RHPs) and other factors affect whether sharing, dominance relationships, or other behaviours are evolutionarily stable. We find through extensive numerical simulations that sharing is stable only when the cost of fighting is low and the animals in a contest have similar RHPs, whereas dominance relationships are stable in most other situations. We also explore what happens when animals are unable to assess each others RHPs without fighting, and we compare a range of strategies for this problem using simulations. We find (1) that the most successful strategies involve a limited period of assessment followed by a stable relationship in which fights are avoided and (2) that the duration of assessment depends both on the costliness of fighting and on the difference between the animals RHPs. Along with our direct work on modeling and simulations, we develop extensive software to facilitate further testing; it is available at url{https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/}.

قيم البحث

اقرأ أيضاً

Evolutionary game theory has traditionally assumed that all individuals in a population interact with each other between reproduction events. We show that eliminating this restriction by explicitly considering the time scales of interaction and selec tion leads to dramatic changes in the outcome of evolution. Examples include the selection of the inefficient strategy in the Harmony and Stag-Hunt games, and the disappearance of the coexistence state in the Snowdrift game. Our results hold for any population size and in the presence of a background of fitness.
343 - Jose A. Capitan , Sara Cuenda , 2020
Quantitative predictions about the processes that promote species coexistence are a subject of active research in ecology. In particular, competitive interactions are known to shape and maintain ecological communities, and situations where some speci es out-compete or dominate over some others are key to describe natural ecosystems. Here we develop ecological theory using a stochastic, synthetic framework for plant community assembly that leads to predictions amenable to empirical testing. We propose two stochastic continuous-time Markov models that incorporate competitive dominance through a hierarchy of species heights. The first model, which is spatially implicit, predicts both the expected number of species that survive and the conditions under which heights are clustered in realized model communities. The second one allows spatially-explicit interactions of individuals and alternative mechanisms that can help shorter plants overcome height-driven competition, and it demonstrates that clustering patterns remain not only locally but also across increasing spatial scales. Moreover, although plants are actually height-clustered in the spatially-explicit model, it allows for plant species abundances not necessarily skewed to taller plants.
The existence of a die-out threshold (different from the classic disease-invasion one) defining a region of slow extinction of an epidemic has been proved elsewhere for susceptible-aware-infectious-susceptible models without awareness decay, through bifurcation analysis. By means of an equivalent mean-field model defined on regular random networks, we interpret the dynamics of the system in this region and prove that the existence of bifurcation for this second epidemic threshold crucially depends on the absence of awareness decay. We show that the continuum of equilibria that characterizes the slow die-out dynamics collapses into a unique equilibrium when a constant rate of awareness decay is assumed, no matter how small, and that the resulting bifurcation from the disease-free equilibrium is equivalent to that of standard epidemic models. We illustrate these findings with continuous-time stochastic simulations on regular random networks with different degrees. Finally, the behaviour of solutions with and without decay in awareness is compared around the second epidemic threshold for a small rate of awareness decay.
Tumours are made up of a mixed population of different types of cells that include normal struc- tures as well as ones associated with the malignancy, and there are multiple interactions between the malignant cells and the local microenvironment. The se intercellular interactions, modulated by the microenvironment, effect tumour progression and represent a largely under appreciated therapeutic target. We use observations of primary tumor biology from prostate cancer to extrapolate a math- ematical model: specifically; it has been observed that in prostate cancer three disparate cellular outcomes predominate: (i) the tumour remains well differentiated and clinically indolent - in this case the local stromal cells may act to restrain the growth of the cancer; (ii) early in its genesis the tumour acquires a highly malignant phenotype, growing rapidly and displacing the original stromal population (often referred to as small cell prostate cancer) - these less common aggressive tumours are relatively independent of the local microenvironment; and, (iii) the tumour co-opts the local stroma - taking on a classic stromagenic phenotype where interactions with the local microenviron- ment are critical to the cancer growth. We present an evolutionary game theoretical construct that models the influence of tumour-stroma interactions in driving these outcomes. We consider three characteristic and distinct cellular populations: stromal cells, tumour cells that are self-reliant in terms of microenvironmental factors and tumour cells that depend on the environment for resources but can also co-opt stroma. Using evolutionary game theory we explore a number of different sce- narios that elucidate the impact of tumour-stromal interactions on the dynamics of prostate cancer growth and progression and how different treatments in the metastatic setting can affect different types of tumors.
The theory of communication through coherence (CTC) proposes that brain oscillations reflect changes in the excitability of neurons, and therefore the successful communication between two oscillating neural populations depends not only on the strengt h of the signal emitted but also on the relative phases between them. More precisely, effective communication occurs when the emitting and receiving populations are properly phase locked so the inputs sent by the emitting population arrive at the phases of maximal excitability of the receiving population. To study this setting, we consider a population rate model consisting of excitatory and inhibitory cells modelling the receiving population, and we perturb it with a time-dependent periodic function modelling the input from the emitting population. We consider the stroboscopic map for this system and compute numerically the fixed and periodic points of this map and their bifurcations as the amplitude and the frequency of the perturbation are varied. From the bifurcation diagram, we identify the phase-locked states as well as different regions of bistability. We explore carefully the dynamics emphasizing its implications for the CTC theory. In particular, we study how the input gain depends on the timing between the input and the inhibitory action of the receiving population. Our results show that naturally an optimal phase locking for CTC emerges, and provide a mechanism by which the receiving population can implement selective communication. Moreover, the presence of bistable regions, suggests a mechanism by which different communication regimes between brain areas can be established without changing the structure of the network
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا