ترغب بنشر مسار تعليمي؟ اضغط هنا

The Unusual Suppression of Superconducting Transition Temperature in Double-Doping 2H-NbSe$_2$

63   0   0.0 ( 0 )
 نشر من قبل Huixia Luo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

2H-NbSe2 is one of the most widely researched transition metal dichalcogenide (TMD) superconductors, which undergoes charge-density wave (CDW) transition at TCDW about 33 K and superconducting transition at Tc of 7.3 K. To explore the relation between its superconductivity and Fermi surface nesting, we combined S substitution with Cu intercalation in 2H-NbSe2 to make CuxNbSe2-ySy. Upon systematic substitution of S and intercalation of Cu ions into 2H-NbSe2, we found that when the Cu and S contents increases, the Tc decreases in CuxNbSe2-ySy. While at higher x and y values, Tc keeps a constant value near 2 K, which is not commonly observed for a layered TMD. For comparison, we found the simultaneous substitution of Nb by Cu and Se by S in CuxNb1-xSe2-ySy lowered the Tc substantially faster. We construct a superconducting phase diagrams for our double-doping compounds in contrast with the related single-ions doping systems.

قيم البحث

اقرأ أيضاً

We present a high energy-resolution inelastic x-ray scattering data investigation of the charge-density-wave (CDW) soft phonon mode upon entering the superconducting state in $2H$-NbSe$_2$. Measurements were done close to the CDW ordering wavevector $mathbf{q}_{CDW}$ at $mathbf{q}=mathbf{q}_{CDW}+(0,0,l)$,$0.15leq l leq 0.5$, for $T=10,rm{K}$ (CDW order) and $3.8,rm{K}$ (CDW order + superconductivity). We observe changes of the phonon lineshape that are characteristic for systems with strong electron-phonon coupling in the presence of a superconducting energy gap $2Delta_c$ and from which we can demonstrate an $l$-dependence of the superconducting gap. Reversely, our data imply that the CDW energy gap is strongly localized along the $c^*$ direction. The confinement of the CDW gap to a very small momentum region explains the rather low competition and easy coexistence of CDW order and superconductivity in $2H$-NbSe$_2$. However, the energy gained by opening $Delta_{CDW}$ seems to be too small to be the driving force of the phase transition at $T_{CDW}=33,rm{K}$ , which is better described as an electron-phonon coupling driven structural phase transition.
Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties. Two-dime nsional (2D) NbSe$_2$ has emerged as a new non-centrosymmetric superconductor with the unique out-of-plane or Ising spin-orbit coupling (SOC). Here, we report the observation of an unusual continuous paramagnetic-limited superconductor-normal metal transition in 2D NbSe$_2$. Using tunneling spectroscopy under high in-plane magnetic fields, we observe a continuous closing of the superconducting gap at the upper critical field at low temperatures, in stark contrast to the abrupt first-order transition observed in BCS thin film superconductors. The paramagnetic-limited continuous transition arises from a large spin susceptibility of the superconducting phase due to the Ising SOC. The result is further supported by self-consistent mean-field calculations based on the ab initio band structure of 2D NbSe$_2$. Our findings establish 2D NbSe$_2$ as a promising platform for exploring novel spin-dependent superconducting phenomena and device concepts, such as equal-spin Andreev reflection and topological superconductivity.
It is well known that superconductivity in thin films is generally suppressed with decreasing thickness. This suppression is normally governed by either disorder-induced localization of Cooper pairs, weakening of Coulomb screening, or generation and unbinding of vortex-antivortex pairs as described by the Berezinskii-Kosterlitz-Thouless (BKT) theory. Defying general expectations, few-layer NbSe2 - an archetypal example of ultrathin superconductors - has been found to remain superconducting down to monolayer thickness. Here we report measurements of both the superconducting energy gap and critical temperature in high-quality monocrystals of few-layer NbSe2, using planar-junction tunneling spectroscopy and lateral transport. We observe a fully developed gap that rapidly reduces for devices with the number of layers N < 5, as does their ctitical temperature. We show that the observed reduction cannot be explained by disorder, and the BKT mechanism is also excluded by measuring its transition temperature that for all N remains very close to Tc. We attribute the observed behavior to changes in the electronic band structure predicted for mono- and bi- layer NbSe2 combined with inevitable suppression of the Cooper pair density at the superconductor-vacuum interface. Our experimental results for N > 2 are in good agreement with the dependences of the gap and Tc expected in the latter case while the effect of band-structure reconstruction is evidenced by a stronger suppression of the gap and the disappearance of its anisotropy for N = 2. The spatial scale involved in the surface suppression of the density of states is only a few angstroms but cannot be ignored for atomically thin superconductors.
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for speci fic Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest en ergy longitudinal phonons bands, appears along the $mathrm{Gamma M}$ symmetry line in reciprocal space. In sharp contrast to the iso-electronic compounds 2H-NbSe$_2$, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab-initio calculations. We show that 2H-NbS$_2$ is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا