ترغب بنشر مسار تعليمي؟ اضغط هنا

The energetic cost of work extraction

85   0   0.0 ( 0 )
 نشر من قبل Juliette Monsel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze work extraction from a qubit into a wave guide (WG) acting as a battery, where work is the coherent component of the energy radiated by the qubit. The process is stimulated by a wave packet whose mean photon number (the batterys charge) can be adjusted. We show that the extracted work is bounded by the qubits ergotropy, and that the bound is saturated for a large enough batterys charge. If this charge is small, work can still be extracted. Its amount is controlled by the quantum coherence initially injected in the qubits state, that appears as a key parameter when energetic resources are limited. This new and autonomous scenario for the study of quantum batteries can be implemented with state-of-the-art artificial qubits coupled to WGs.



قيم البحث

اقرأ أيضاً

We quantitatively assess the energetic cost of several well-known control protocols that achieve a finite time adiabatic dynamics, namely counterdiabatic and local counterdiabatic driving, optimal control, and inverse engineering. By employing a cost measure based on the norm of the total driving Hamiltonian, we show that a hierarchy of costs emerges that is dependent on the protocol duration. As case studies we explore the Landau-Zener model, the quantum harmonic oscillator, and the Jaynes-Cummings model and establish that qualitatively similar results hold in all cases. For the analytically tractable Landau-Zener case, we further relate the effectiveness of a control protocol with the spectral features of the new driving Hamiltonians and show that in the case of counterdiabatic driving, it is possible to further minimize the cost by optimizing the ramp.
We discuss thermodynamic work cost of various stages of a quantum estimation protocol: probe and memory register preparation, measurement and extraction of work from post-measurement states. We consider both (i) a multi-shot scenario, where average w ork is calculated in terms of the standard Shannon entropy and (ii) a single-shot scenario, where deterministic work is expressed in terms of min- and max-entropies. We discuss an exemplary phase estimation protocol where estimation precision is optimized under a fixed work credit (multi-shot) or a total work cost (single-shot). In the multi-shot regime precision is determined using the concept of Fisher information, while in the single-shot case we advocate the use of confidence intervals as only they can provide a meaningful and reliable information in a single-shot experiment, combining naturally with the the concept of deterministic work.
We consider locally thermal states (for two qubits) with certain amount of quantum entanglement present between them. Unlike previous protocols we show how work can be extracted by performing local unitary operations on this state by allowing those t wo qubits to interact with thermal baths of different temperatures, thereby gradually removing the entanglement between them till they reach a direct product state. Also we demonstrate that, further work can be extracted from this direct product state by performing global unitary operation, thereby establishing that work can be extracted from a system composed of locally thermal subsystems even after removing quantum correlations between them if the subsystems are thermalized at different temperatures. Also we show that even if we consider a initial state where there is no entanglement between the two qubits, we can also extract work locally using our method.
We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We conside r a bipartite quantum system and we show that it is possible to optimise the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.
We analyze the role of indirect quantum measurements in work extraction from quantum systems in nonequilibrium states. In particular, we focus on the work that can be obtained by exploiting the correlations shared between the system of interest and a n additional ancilla, where measurement backaction introduces a nontrivial thermodynamic tradeoff. We present optimal state-dependent protocols for extracting work from both classical and quantum correlations, the latter being measured by discord. We show that, while the work content of classical correlations can be fully extracted by performing local operations on the system of interest, the amount of work related to quantum discord requires a specific driving protocol that includes interaction between system and ancilla.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا