ﻻ يوجد ملخص باللغة العربية
The detection of anatomical landmarks is a vital step for medical image analysis and applications for diagnosis, interpretation and guidance. Manual annotation of landmarks is a tedious process that requires domain-specific expertise and introduces inter-observer variability. This paper proposes a new detection approach for multiple landmarks based on multi-agent reinforcement learning. Our hypothesis is that the position of all anatomical landmarks is interdependent and non-random within the human anatomy, thus finding one landmark can help to deduce the location of others. Using a Deep Q-Network (DQN) architecture we construct an environment and agent with implicit inter-communication such that we can accommodate K agents acting and learning simultaneously, while they attempt to detect K different landmarks. During training the agents collaborate by sharing their accumulated knowledge for a collective gain. We compare our approach with state-of-the-art architectures and achieve significantly better accuracy by reducing the detection error by 50%, while requiring fewer computational resources and time to train compared to the naive approach of training K agents separately.
Accurate detection of anatomical landmarks is an essential step in several medical imaging tasks. We propose a novel communicative multi-agent reinforcement learning (C-MARL) system to automatically detect landmarks in 3D brain images. C-MARL enables
Pursuit-evasion is the problem of capturing mobile targets with one or more pursuers. We use deep reinforcement learning for pursuing an omni-directional target with multiple, homogeneous agents that are subject to unicycle kinematic constraints. We
We consider the multi-agent reinforcement learning setting with imperfect information in which each agent is trying to maximize its own utility. The reward function depends on the hidden state (or goal) of both agents, so the agents must infer the ot
Multi-Agent Reinforcement Learning (MARL) algorithms show amazing performance in simulation in recent years, but placing MARL in real-world applications may suffer safety problems. MARL with centralized shields was proposed and verified in safety gam
Video summarization aims at generating concise video summaries from the lengthy videos, to achieve better user watching experience. Due to the subjectivity, purely supervised methods for video summarization may bring the inherent errors from the anno