ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexity of acyclic colorings of graphs and digraphs with degree and girth constraints

79   0   0.0 ( 0 )
 نشر من قبل Pavol Hell
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider acyclic r-colorings in graphs and digraphs: they color the vertices in r colors, each of which induces an acyclic graph or digraph. (This includes the dichromatic number of a digraph, and the arboricity of a graph.) For any girth and sufficiently high degree, we prove the NP-completeness of acyclic r-colorings; our method also implies the known analogue for classical colorings. The proofs use high girth graphs with high arboricity and dichromatic numbers. High girth graphs and digraphs with high chromatic and dichromatic numbers have been well studied; we re-derive the results from a general result about relational systems, which also implies the similar fact about high girth and high arboricity used in the proofs. These facts concern graphs and digraphs of high girth and low degree; we contrast them by considering acyclic colorings of tournaments (which have low girth and high degree). We prove that even though acyclic two-colorability of tournaments is known to be NP-complete, random acyclically r-colorable tournaments allow recovering an acyclic r-coloring in deterministic linear time, with high probablity.

قيم البحث

اقرأ أيضاً

A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyc lic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring (the last problem is also known as $L(1,1)$-Labelling). A classical complexity result on Colouring is a well-known dichotomy for $H$-free graphs (a graph is $H$-free if it does not contain $H$ as an induced subgraph). In contrast, there is no systematic study into the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring despite numerous algorithmic and structural results that have appeared over the years. We perform such a study and give almost complete complexity classifications for Acyclic Colouring, Star Colouring and Injective Colouring on $H$-free graphs (for each of the problems, we have one open case). Moreover, we give full complexity classifications if the number of colours $k$ is fixed, that is, not part of the input. From our study it follows that for fixed $k$ the three problems behave in the same way, but this is no longer true if $k$ is part of the input. To obtain several of our results we prove stronger complexity results that in particular involve the girth of a graph and the class of line graphs of multigraphs.
An edge-coloring of a graph $G$ with colors $1,2,ldots,t$ is an interval $t$-coloring if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. A graph $G$ is interval colorable if i t has an interval $t$-coloring for some positive integer $t$. For an interval colorable graph $G$, $W(G)$ denotes the greatest value of $t$ for which $G$ has an interval $t$-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of $W(K_{2n})$ is known only for $n leq 4$. The second author showed that if $n = p2^q$, where $p$ is odd and $q$ is nonnegative, then $W(K_{2n}) geq 4n-2-p-q$. Later, he conjectured that if $n in mathbb{N}$, then $W(K_{2n}) = 4n - 2 - leftlfloorlog_2{n}rightrfloor - left | n_2 right |$, where $left | n_2 right |$ is the number of $1$s in the binary representation of $n$. In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on $W(K_{2n})$ and determine its exact values for $n leq 12$.
A $k$-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value $k$ for which $G$ admits such colo ring is denoted by $chi_a(G)$. We prove that $chi_a(G) = 2R + 1$ for most circulant graphs $C_n([1, R])$.
An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$ or $f$. An incidence coloring of $G$ assigns a color to each incidence of $G$ in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama emph{et al.}~citep{ds05} proved that every graph with maximum average degree strictly less than $3$ can be incidence colored with $Delta+3$ colors. Recently, Bonamy emph{et al.}~citep{Bonamy} proved that every graph with maximum degree at least $4$ and with maximum average degree strictly less than $frac{7}{3}$ admits an incidence $(Delta+1)$-coloring. In this paper we give bounds for the number of colors needed to color graphs having maximum average degrees bounded by different values between $4$ and $6$. In particular we prove that every graph with maximum degree at least $7$ and with maximum average degree less than $4$ admits an incidence $(Delta+3)$-coloring. This result implies that every triangle-free planar graph with maximum degree at least $7$ is incidence $(Delta+3)$-colorable. We also prove that every graph with maximum average degree less than 6 admits an incidence $(Delta + 7)$-coloring. More generally, we prove that $Delta+k-1$ colors are enough when the maximum average degree is less than $k$ and the maximum degree is sufficiently large.
We unify several seemingly different graph and digraph classes under one umbrella. These classes are all broadly speaking different generalizations of interval graphs, and include, in addition to interval graphs, also adjusted interval digraphs, thre shold graphs, complements of threshold tolerance graphs (known as `co-TT graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have been investigated in different contexts.) This common view is made possible by introducing loops. We also show that all the above classes are united by a common ordering characterization, the existence of a min ordering. We propose a common generalization of all these graph and digraph classes, namely signed-interval digraphs, and show that they are precisely the digraphs that are characterized by the existence of a min ordering. We also offer an alternative geometric characterization of these digraphs. For most of the above example graph and digraph classes, we show that they are exactly those signed-interval digraphs that satisfy a suitable natural restriction on the digraph, like having all loops, or having a symmetric edge-set, or being bipartite. (For instance co-TT graphs are precisely those signed-interval digraphs that have each edge symmetric.) We also offer some discussion of recognition algorithms and characterizations, saving the details for future papers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا