ترغب بنشر مسار تعليمي؟ اضغط هنا

Clearly Discriminate the Continuum Band and Exciton State of the Hybrid Lead Bromide Perovskite

133   0   0.0 ( 0 )
 نشر من قبل Qingbo Meng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic states of the hybrid perovskite enable their promising applications as distinctive optoelectronic materials. The understanding of their electronic structures and charge characters remains highly controversial. The electronic mechanism such as reabsorption, Urbach tail and indirect band for interpreting dual-peak emissions is one of the controversial focuses. Herein, we report that through heterojunction enhanced exciton dissociation and global tracing of multiple radiative electronic states across wide temperature regions, we have succeeded in directly observing free carrier emissions from the hybrid lead bromide perovskite and clearly discriminating the direct continuum band and exciton states. The widely-concerned dual-peak emissions are clarified to be excitonic, arising from two types of exciton states of the perovskite. These excitons possess giant binding energies and superior phase stability compared to conventional inorganic semiconductors, providing important implications for exploiting the excitonic mechanism for realizing novel optoelectronic applications.

قيم البحث

اقرأ أيضاً

Forster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as a new optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported onl y diffusion length of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (PNC). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites optical absorption depth, opening the possibility to design new optoelectronic device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nano-lasers. Whilst non-resonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr3 nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by one order of magnitude whilst suppressing non-coherent contributions. The result is a source with highly attractive technological characteristics including a bright and polarized signal, and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly-confined excitonic state with a Bohr radius ~10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve two-fold non-degenerate sub-levels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.
Organic-inorganic halide perovskites are intrinsically unstable when exposed to moisture and/or light. Additionally, the presence of lead in many perovskites raises toxicity concerns. Herein is reported a thin film of BaZrS3, a lead-free chalcogenide perovskite. Photoluminescence and X-ray diffraction measurements show that BaZrS3 is far more stable than methylammonium lead iodide (MAPbI3) in moist environments. Moisture- and light-induced degradations in BaZrS3 and MAPbI3 are compared by using simulations and calculations based on density functional theory. The simulations reveal drastically slower degradation in BaZrS3 due to two factors - weak interaction with water, and very low rates of ion migration. BaZrS3 photo-detecting devices with photo-responsivity of ~46.5 mA W-1 are also reported. The devices retain ~60% of their initial photo-response after 4 weeks in ambient conditions. Similar MAPbI3 devices degrade rapidly and show ~95% decrease in photo-responsivity in just 4 days. The findings establish the superior stability of BaZrS3 and strengthen the case for its use in optoelectronics. New possibilities for thermoelectric energy conversion using these materials are also demonstrated.
Bound states in the continuum (BICs) have attracted much attention in recent years due to the infinite quality factor (Q-factor) resonance and extremely localized field. In this study, BICs have been demonstrated by dielectric metasurfaces with hybri d surface lattice resonance (SLR) in the experiment. By breaking the symmetry of geometry, SLR can be easily switched between BICs and quasi-BICs. Comparing with literature, switching between BICs and quasi-BICs is usually accompanied by wavelength shift. Here, a design rule is proposed to prevent the wavelength shift when the Q-factor is changing. Also, such a design also makes subsequent identification of the laser threshold more credible. Due to the high Q-factor, low threshold laser is one of the intuitive applications of BICs. Utilize the high localized ability of BICs, low threshold BICs laser can be achieved by the dielectric metasurface immersed with Rhodamine 6G. Interestingly, due to the high Q-factor resonance of BICs, the laser signals and images can be observed in almost transparent samples. Not only the BICs laser is demonstrated in the experiment, but also the mechanism of BICs is deeply analyzed. This study can help readers better understand this novel feature of BICs, and provide the way for engineer BICs metasurfaces. The device can provide various applications, including laser, optical sensing, non-linear optics enhancement, and single-photon source.
The relaxation of high-energy hot carriers in semiconductors is known to involve the redistribution of energy between (i) hot and cold carriers and (ii) hot carriers and phonons. Over the past few years, these two processes have been identified in le ad-halide perovskites (LHPs) using ultrafast pump-probe experiments, but the interplay between these processes is not fully understood. Here we present a comprehensive kinetic model to elucidate the individual effects of the hot and cold carriers in bulk and nanocrystal $CsPbBr_{3}$ films obtained from pump-push-probe measurements. In accordance with our previous work, we observe that the cooling dynamics in the materials decelerate as the number of hot carriers increases, which we explain through a hot-phonon bottleneck mechanism. On the other hand, as the number of cold carriers increases, we observe an acceleration of the cooling kinetics in the samples. We describe the interplay of these opposing effects using our model, and by using series of natural approximations, reduce this model to a simple form containing terms for the carrier-carrier and carrier-phonon interactions. The model can be instrumental for evaluating the details of carrier cooling and electron-phonon couplings in a broad range of LHP optoelectronic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا