ﻻ يوجد ملخص باللغة العربية
The object ESO456-SC38 (Djorgovski 2) is one of the globular clusters that is closest to the Galactic center. It is on the blue horizontal branch and has a moderate metallicity of [Fe/H]~-1.0. It is thus similar to the very old inner bulge globular clusters NGC 6522, NGC 6558, and HP 1, and therefore appears to be part of the primeval formation stages of the Milky Way. The aim of this work is to determine an accurate distance and metallicity for ESO456-SC38, as well as orbital parameters, in order to check similarities with other clusters in the inner bulge that have previously been well studied in terms of spectroscopy and photometry. This is a considerably fainter cluster that is contaminated by a rich stellar field; it is also quite absorbed by the dusty foreground. We analyzed ESO456-SC38 based on Hubble Space Telescope photometry, with the filters F606W from ACS, F110W and F160W from WFC3,and photometry in V and I from FORS2 at the VLT. We combined this with identified stars that are covered by Gaia Data Release 2. The isochrone fitting was carried out with the statistical Markov chain Monte Carlo method. We derive an accurate distance of dSun = 8.75+-0.12 kpc and a reddening of E(B-V)=0.81^+0.02_-0.02. The best-fitting BaSTI isochrones correspond to an age of 12.70^{+0.72}_{-0.69} Gyr and a metallicity of [Fe/H]=-1.11^{+0.03}_{-0.03}. ESO 456-SC38 adds to the list of moderately metal-poor globular clusters located in the inner bulge. It is on the blue horizontal branch and is very old. The cluster is confined to the bulge and bar region, but it does not support the Galactic bar structure. The old stellar population represented by clusters like this has to be taken into account in models of Galactic bulge formation. Studying them also provides indications on the formation times of the globular clusters themselves.
It has been suggested that the oldest stellar populations in the Milky Way Galaxy are tightly bound and confined to the central regions of the Galaxy. This is one of the reasons why a handful of globular clusters located in the bulge region are thoug
We obtained FLAMES GIRAFFE+UVES spectra for both first and second-generation red giant branch (RGB) stars in the globular cluster (GC) NGC 362 and used them to derive abundances of 21 atomic species for a sample of 92 stars. The surveyed elements inc
Globular Clusters are among the oldest objects in the Galaxy, thus their researchers are key to understanding the processes of evolution and formation that the galaxy has experienced in early stages. Spectroscopic studies allow us to carry out detail
We used high-resolution optical HST/WFC3 and multi-conjugate adaptive optics assisted GEMINI GeMS/GSAOI observations in the near-infrared to investigate the physical properties of the globular cluster NGC 6569 in the Galactic bulge. We have obtained
We analyse the globular cluster (GC) systems of a sample of 15 massive, compact early-type galaxies (ETGs), 13 of which have already been identified as good relic galaxy candidates on the basis of their compact morphologies, old stellar populations a