ترغب بنشر مسار تعليمي؟ اضغط هنا

3D integration and packaging for solid-state qubits

88   0   0.0 ( 0 )
 نشر من قبل Danna Rosenberg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Developing a packaging scheme that meets all of the requirements for operation of solid-state qubits in a cryogenic environment can be a formidable challenge. In this article, we discuss work being done in our group as well as in the broader community, focusing on the role of 3D integration and packaging in quantum processing with solid-state qubits.



قيم البحث

اقرأ أيضاً

Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emerge from global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable.
We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical su perconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking. More detailed crosstalk measurements indicate levels of crosstalk less than -40 dB at the qubit frequencies, opening the possibility of integration with extensible qubit architectures.
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the coupling to the background gate charges, as well as the effect of dynamical noise. We also analyze the readout process, and its backaction on the state transfer.
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubit s separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward we achieve teleportation in each attempt while obtaining an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا