ﻻ يوجد ملخص باللغة العربية
Automatic syllable count estimation (SCE) is used in a variety of applications ranging from speaking rate estimation to detecting social activity from wearable microphones or developmental research concerned with quantifying speech heard by language-learning children in different environments. The majority of previously utilized SCE methods have relied on heuristic DSP methods, and only a small number of bi-directional long short-term memory (BLSTM) approaches have made use of modern machine learning approaches in the SCE task. This paper presents a novel end-to-end method called SylNet for automatic syllable counting from speech, built on the basis of a recent developments in neural network architectures. We describe how the entire model can be optimized directly to minimize SCE error on the training data without annotations aligned at the syllable level, and how it can be adapted to new languages using limited speech data with known syllable counts. Experiments on several different languages reveal that SylNet generalizes to languages beyond its training data and further improves with adaptation. It also outperforms several previously proposed methods for syllabification, including end-to-end BLSTMs.
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representat
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t
While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
We describe a sequence-to-sequence neural network which directly generates speech waveforms from text inputs. The architecture extends the Tacotron model by incorporating a normalizing flow into the autoregressive decoder loop. Output waveforms are m