ﻻ يوجد ملخص باللغة العربية
Interfacial electron-phonon coupling in ultrathin films has attracted much interest; it can give rise to novel effects and phenomena, including enhanced superconductivity. Here we report an observation of strong kinks in the energy dispersions of quantum well states in ultrathin Yb films grown on graphite. These kinks, arising from interfacial electron-phonon coupling, are most prominent for films with a preferred (magic) thickness of 4 monolayers, which are strained and hole doped by the substrate. The energy position of the kinks agrees well with the optical phonon energy of graphite, and the extracted electron-phonon coupling strength {lambda} shows a large subband dependence, with a maximum value up to 0.6. The kinks decay rapidly with increasing film thickness, consistent with its interfacial origin. The variation of {lambda} is correlated with evolution of the electronic wave function amplitudes at the interface. A Lifshitz transition occurs just beyond the magic thickness where the heavy Yb 5d bands begin to populate right below the Fermi level.
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the sigma band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cut-off in the Fermi-Dirac distributio
First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the $sigma$ band with $lambda$ values of up to 0.9. Near the top of the $sigma$ band, $lambda$ is found to be $approx 0.7$. This value is consis
Ultrathin FeSe films grown on SrTiO$_{3}$ substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. Using femtosecond time- and angle-resolved
The title compound is investigated by specific heat measurements in the normal and superconducting state supplemented by upper critical field transport, susceptibility and magnetization measurements. From a detailed analysis including also full poten
Linear response methods are applied to identify the increase in electron-phonon coupling in elemental yttrium that is responsible for its high superconducting critical temperature Tc, which reaches nearly 20 K at 115 GPa. While the evolution of the b