ﻻ يوجد ملخص باللغة العربية
It has been reported that there is a deficit of stellar heated dust, as evident from the lack of far-infrared (FIR) emission, in sources within the Herschel-SPIRE sample with X-ray luminosities exceeding a ``critical value of L~10^37 W. Such a scenario would be consistent with the suppression of star formation by the AGN, required by current theoretical models. Since absorption of the 21-cm transition of neutral hydrogen (HI), which traces the star-forming reservoir, also exhibits a critical value in the ultra-violet band (above ionising photon rates of Q ~ 3 x 10^56 s^-1), we test the SPIRE sample for the incidence of the detection of 250 micron emission with Q. The highest value at which FIR emission is detected above the SPIRE confusion limit is Q = 8.9 x 10^57 s^-1, which is ~30 times that for the HI, with no critical value apparent. Since complete ionisation of the neutral atomic gas is expected at Q > 3 x 10^56 s-1., this may suggest that much of the FIR must arise from heating of the dust by the AGN. However, integrating the ionising photon rate of each star over the initial mass function, we cannot rule out that the high observed ionising photon rates are due to a population of hot, massive stars.
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {AA} emission that cannot be explained by thermal processes alone
We investigate the star forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, $(i - [22])_{rm AB} > 7.0$. Combining an IR-bright DOG sample with the flux at 22
We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 < z < 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L_IR > 10^11.5L_sun). With these measurements
We report the first results from a spectroscopic survey of the [CII] 158um line from a sample of intermediate redshift (0.2<z<0.8) (ultra)-luminous infrared galaxies, (U)LIRGs (LIR>10^11.5 Lsun), using the SPIRE-Fourier Transform Spectrometer (FTS) o
Flux variability is one of the defining characteristics of Seyfert galaxies, a class of active galactic nuclei (AGN). Though these variations are observed over a wide range of wavelengths, results on their flux variability characteristics in the ultr