ترغب بنشر مسار تعليمي؟ اضغط هنا

EnlightenGAN: Deep Light Enhancement without Paired Supervision

310   0   0.0 ( 0 )
 نشر من قبل Yifan Jiang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning-based methods have achieved remarkable success in image restoration and enhancement, but are they still competitive when there is a lack of paired training data? As one such example, this paper explores the low-light image enhancement problem, where in practice it is extremely challenging to simultaneously take a low-light and a normal-light photo of the same visual scene. We propose a highly effective unsupervised generative adversarial network, dubbed EnlightenGAN, that can be trained without low/normal-light image pairs, yet proves to generalize very well on various real-world test images. Instead of supervising the learning using ground truth data, we propose to regularize the unpaired training using the information extracted from the input itself, and benchmark a series of innovations for the low-light image enhancement problem, including a global-local discriminator structure, a self-regularized perceptual loss fusion, and attention mechanism. Through extensive experiments, our proposed approach outperforms recent methods under a variety of metrics in terms of visual quality and subjective user study. Thanks to the great flexibility brought by unpaired training, EnlightenGAN is demonstrated to be easily adaptable to enhancing real-world images from various domains. The code is available at url{https://github.com/yueruchen/EnlightenGAN}



قيم البحث

اقرأ أيضاً

81 - Zohreh Azizi , Xuejing Lei , 2020
A simple and effective low-light image enhancement method based on a noise-aware texture-preserving retinex model is proposed in this work. The new method, called NATLE, attempts to strike a balance between noise removal and natural texture preservat ion through a low-complexity solution. Its cost function includes an estimated piece-wise smooth illumination map and a noise-free texture-preserving reflectance map. Afterwards, illumination is adjusted to form the enhanced image together with the reflectance map. Extensive experiments are conducted on common low-light image enhancement datasets to demonstrate the superior performance of NATLE.
Low-light images captured in the real world are inevitably corrupted by sensor noise. Such noise is spatially variant and highly dependent on the underlying pixel intensity, deviating from the oversimplified assumptions in conventional denoising. Exi sting light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step. We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded optimization framework. For the real low-light noise removal part, we customize a self-supervised denoising model that can easily be adapted without referring to clean ground-truth images. For the light enhancement part, we also improve the design of a state-of-the-art backbone. The two parts are then joint formulated into one principled plug-and-play optimization. Our approach is compared against state-of-the-art low-light enhancement methods both qualitatively and quantitatively. Besides standard benchmarks, we further collect and test on a new realistic low-light mobile photography dataset (RLMP), whose mobile-captured photos display heavier realistic noise than those taken by high-quality cameras. CERL consistently produces the most visually pleasing and artifact-free results across all experiments. Our RLMP dataset and codes are available at: https://github.com/VITA-Group/CERL.
188 - Jiang Hai , Zhu Xuan , Ren Yang 2021
Images captured in weak illumination conditions will seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of the image and the performance of high-level visual tasks. In t his paper, we propose a novel Real-low to Real-normal Network for low-light image enhancement, dubbed R2RNet, based on the Retinex theory, which includes three subnets: a Decom-Net, a Denoise-Net, and a Relight-Net. These three subnets are used for decomposing, denoising, and contrast enhancement, respectively. Unlike most previous methods trained on synthetic images, we collect the first Large-Scale Real-World paired low/normal-light images dataset (LSRW dataset) for training. Our method can properly improve the contrast and suppress noise simultaneously. Extensive experiments on publicly available datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin both quantitatively and visually. And we also show that the performance of the high-level visual task (emph{i.e.} face detection) can be effectively improved by using the enhanced results obtained by our method in low-light conditions. Our codes and the LSRW dataset are available at: https://github.com/abcdef2000/R2RNet.
In this paper, we propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks, towards intelligent front-end equipped analysis with promising accuracy and efficiency. In parti cular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost to achieve feature-in-feature representation. In order to further improve the compression performance, we present a latent code level teacher-student enhancement model, which could efficiently transfer the low bit-rate representation into a high bit rate one. Such a strategy further allows us to adaptively shift the representation cost to decoding computations, leading to more flexible feature compression with enhanced decoding capability. We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy compared with existing models.
Many real-world tasks require models to compare images along multiple similarity conditions (e.g. similarity in color, category or shape). Existing methods often reason about these complex similarity relationships by learning condition-aware embeddin gs. While such embeddings aid models in learning different notions of similarity, they also limit their capability to generalize to unseen categories since they require explicit labels at test time. To address this deficiency, we propose an approach that jointly learns representations for the different similarity conditions and their contributions as a latent variable without explicit supervision. Comprehensive experiments across three datasets, Polyvore-Outfits, Maryland-Polyvore and UT-Zappos50k, demonstrate the effectiveness of our approach: our model outperforms the state-of-the-art methods, even those that are strongly supervised with pre-defined similarity conditions, on fill-in-the-blank, outfit compatibility prediction and triplet prediction tasks. Finally, we show that our model learns different visually-relevant semantic sub-spaces that allow it to generalize well to unseen categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا