ﻻ يوجد ملخص باللغة العربية
In this study, we begin a comprehensive characterisation of temperature extremes in Ireland for the period 1981-2010. We produce return levels of anomalies of daily maximum temperature extremes for an area over Ireland, for the 30-year period 1981-2010. We employ extreme value theory (EVT) to model the data using the generalised Pareto distribution (GPD) as part of a three-level Bayesian hierarchical model. We use predictive processes in order to solve the computationally difficult problem of modelling data over a very dense spatial field. To our knowledge, this is the first study to combine predictive processes and EVT in this manner. The model is fit using Markov chain Monte Carlo (MCMC) algorithms. Posterior parameter estimates and return level surfaces are produced, in addition to specific site analysis at synoptic stations, including Casement Aerodrome and Dublin Airport. Observational data from the period 2011-2018 is included in this site analysis to determine if there is evidence of a change in the observed extremes. An increase in the frequency of extreme anomalies, but not the severity, is observed for this period. We found that the frequency of observed extreme anomalies from 2011-2018 at the Casement Aerodrome and Phoenix Park synoptic stations exceed the upper bounds of the credible intervals from the model by 20% and 7% respectively.
Suppose we have a Bayesian model which combines evidence from several different sources. We want to know which model parameters most affect the estimate or decision from the model, or which of the parameter uncertainties drive the decision uncertaint
Environmental processes resolved at a sufficiently small scale in space and time will inevitably display non-stationary behavior. Such processes are both challenging to model and computationally expensive when the data size is large. Instead of model
The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a vary
Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across su
Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistic