ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Report: Optimizing Human Involvement for Entity Matching and Consolidation

195   0   0.0 ( 0 )
 نشر من قبل Ji Sun
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An end-to-end data integration system requires human feedback in several phases, including collecting training data for entity matching, debugging the resulting clusters, confirming transformations applied on these clusters for data standardization, and finally, reducing each cluster to a single, canonical representation (or golden record). The traditional wisdom is to sequentially apply the human feedback, obtained by asking specific questions, within some budget in each phase. However, these questions are highly correlated; the answer to one can influence the outcome of any of the phases of the pipeline. Hence, interleaving them has the potential to offer significant benefits. In this paper, we propose a human-in-the-loop framework that interleaves different types of questions to optimize human involvement. We propose benefit models to measure the quality improvement from asking a question, and cost models to measure the human time it takes to answer a question. We develop a question scheduling framework that judiciously selects questions to maximize the accuracy of the final golden records. Experimental results on three real-world datasets show that our holistic method significantly improves the quality of golden records from 70% to 90%, compared with the state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

We propose a class of functional dependencies for temporal graphs, called TGFDs. TGFDs capture both attribute-value dependencies and topological structures of entities over a valid period of time in a temporal graph. It subsumes graph functional depe ndencies (gfds) and conditional functional dependencies (CFDs) as a special case. We study the foundations of TGFDs including satisfiability, implication and validation. We show that the satisfiability and validation problems are coNP-complete and the implication problem is NP-complete. We also present an axiomatization of TGFDs and provide the proof of the soundness and completeness of the axiomatization.
We present a new video storage system (VSS) designed to decouple high-level video operations from the low-level details required to store and efficiently retrieve video data. VSS is designed to be the storage subsystem of a video data management syst em (VDBMS) and is responsible for: (1) transparently and automatically arranging the data on disk in an efficient, granular format; (2) caching frequently-retrieved regions in the most useful formats; and (3) eliminating redundancies found in videos captured from multiple cameras with overlapping fields of view. Our results suggest that VSS can improve VDBMS read performance by up to 54%, reduce storage costs by up to 45%, and enable developers to focus on application logic rather than video storage and retrieval.
High-quality labels are expensive to obtain for many machine learning tasks, such as medical image classification tasks. Therefore, probabilistic (weak) labels produced by weak supervision tools are used to seed a process in which influential samples with weak labels are identified and cleaned by several human annotators to improve the model performance. To lower the overall cost and computational overhead of this process, we propose a solution called CHEF (CHEap and Fast label cleaning), which consists of the following three components. First, to reduce the cost of human annotators, we use Infl, which prioritizes the most influential training samples for cleaning and provides cleaned labels to save the cost of one human annotator. Second, to accelerate the sample selector phase and the model constructor phase, we use Increm-Infl to incrementally produce influential samples, and DeltaGrad-L to incrementally update the model. Third, we redesign the typical label cleaning pipeline so that human annotators iteratively clean smaller batch of samples rather than one big batch of samples. This yields better over all model performance and enables possible early termination when the expected model performance has been achieved. Extensive experiments show that our approach gives good model prediction performance while achieving significant speed-ups.
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called match ing dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called match ing dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating four components of ER: (a) Building a classifier for duplicate/non-duplicate record pairs built using machine learning (ML) techniques; (b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on the basis of the classifier results; and (d) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for all activities related to data processing, and the specification and enforcement of MDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا