ﻻ يوجد ملخص باللغة العربية
We study quantum anomaly detection with density estimation and multivariate Gaussian distribution. Both algorithms are constructed using the standard gate-based model of quantum computing. Compared with the corresponding classical algorithms, the resource complexities of our quantum algorithm are logarithmic in the dimensionality of quantum states and the number of training quantum states. We also present a quantum procedure for efficiently estimating the determinant of any Hermitian operators $mathcal{A}inmathcal{R}^{Ntimes N}$ with time complexity $O(polylog N)$ which forms an important subroutine in our quantum anomaly detection with multivariate Gaussian distribution. Finally, our results also include the modified quantum kernel principal component analysis (PCA) and the quantum one-class support vector machine (SVM) for detecting classical data.
The spectral density operator $hat{rho}(omega)=delta(omega-hat{H})$ plays a central role in linear response theory as its expectation value, the dynamical response function, can be used to compute scattering cross-sections. In this work, we describe
This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ da
We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy,
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We com
Albeit worryingly underrated in the recent literature on machine learning in general (and, on deep learning in particular), multivariate density estimation is a fundamental task in many applications, at least implicitly, and still an open issue. With