ﻻ يوجد ملخص باللغة العربية
Simultaneous Localization and Mapping (SLAM) is a critical task for autonomous navigation. However, due to the computational complexity of SLAM algorithms, it is very difficult to achieve real-time implementation on low-power platforms.We propose an energy efficient architecture for real-time ORB (Oriented-FAST and Rotated- BRIEF) based visual SLAM system by accelerating the most time consuming stages of feature extraction and matching on FPGA platform.Moreover, the original ORB descriptor pattern is reformed as a rotational symmetric manner which is much more hardware friendly. Optimizations including rescheduling and parallelizing are further utilized to improve the throughput and reduce the memory footprint. Compared with Intel i7 and ARM Cortex-A9 CPUs on TUM dataset, our FPGA realization achieves up to 3X and 31X frame rate improvement, as well as up to 71X and 25X energy efficiency improvement, respectively.
This paper presents a field-programmable gate array (FPGA) design of a segmentation algorithm based on convolutional neural network (CNN) that can process light detection and ranging (LiDAR) data in real-time. For autonomous vehicles, drivable region
In this paper, a real-time signal processing frame-work based on a 60 GHz frequency-modulated continuous wave (FMCW) radar system to recognize gestures is proposed. In order to improve the robustness of the radar-based gesture recognition system, the
Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often couple
In the real-life environments, due to the sudden appearance of windows, lights, and objects blocking the light source, the visual SLAM system can easily capture the low-contrast images caused by over-exposure or over-darkness. At this time, the direc
With the increasing awareness of privacy protection and data fragmentation problem, federated learning has been emerging as a new paradigm of machine learning. Federated learning tends to utilize various privacy preserving mechanisms to protect the t