ﻻ يوجد ملخص باللغة العربية
The work presented here emanates from questions arising from experimental observations of the propagation of surface water waves. The experiments in question featured a periodically moving wavemaker located at one end of a flume that generated unidirectional waves of relatively small amplitude and long wavelength when compared with the undisturbed depth. It was observed that the wave profile at any point down the channel very quickly became periodic in time with the same period as that of the wavemaker. One of the questions dealt with here is whether or not such a property holds for model equations for such waves. In the present discussion, this is examined in the context of the Korteweg-de Vries equation using the recently developed version of the inverse scattering theory for boundary value problems put forward by Fokas and his collaborators. It turns out that the Korteweg-de Vries equation does possess the properly that solutions at a fixed point down the channel have the property of asymptotic periodicity in time when forced periodically at the boundary. However, a more subtle issue to do with conservation of mass fails to hold at the second order in a small parameter which is the typical wave amplitude divided by the undisturbed depth.
We derive asymptotic formulas for the solution of the derivative nonlinear Schrodinger equation on the half-line under the assumption that the initial and boundary values lie in the Schwartz class. The formulas clearly show the effect of the boundary
It has been conjectured that the defocusing nonlinear Schrodinger (NLS) equation on the half-line does not admit solitons. We give a proof of this conjecture.
We analyze initial-boundary value problems for an integrable generalization of the nonlinear Schrodinger equation formulated on the half-line. In particular, we investigate the so-called linearizable boundary conditions, which in this case are of Rob
The most challenging problem in the implementation of the so-called textit{unified transform} to the analysis of the nonlinear Schrodinger equation on the half-line is the characterization of the unknown boundary value in terms of the given initial a
Integrable PDEs on the line can be analyzed by the so-called Inverse Scattering Transform (IST) method. A particularly powerful aspect of the IST is its ability to predict the large $t$ behavior of the solution. Namely, starting with initial data $u(