ترغب بنشر مسار تعليمي؟ اضغط هنا

Active glasses

59   0   0.0 ( 0 )
 نشر من قبل Liesbeth Janssen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active glassy matter has recently emerged as a novel class of non-equilibrium soft matter, combining energy-driven, active particle movement with dense and disordered glass-like behavior. Here we review the state-of-the-art in this field from an experimental, numerical, and theoretical perspective. We consider both non-living and living active glassy systems, and discuss how several hallmarks of glassy dynamics (dynamical slowdown, fragility, dynamical heterogeneity, violation of the Stokes-Einstein relation, and aging) are manifested in such materials. We start by reviewing the recent experimental evidence in this area of research, followed by an overview of the main numerical simulation studies and physical theories of active glassy matter. We conclude by outlining several open questions and possible directions for future work.



قيم البحث

اقرأ أيضاً

We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench es from above the onset temperature, to ultrastable glasses obtained by quenching systems thermalised below the experimental glass temperature. The low-frequency part of the density of states splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behaviour ($D(omega) sim omega^2$) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes instead obey $D(omega) sim omega^4$, irrespective of the glass stability. However, the prefactor of this quartic law becomes smaller in more stable glasses, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glass stability and soft vibrational motion in amorphous solids.
We study a lattice model of attractive colloids. It is exactly solvable on sparse random graphs. As the pressure and temperature are varied it reproduces many characteristic phenomena of liquids, glasses and colloidal systems such as ideal gel format ion, liquid-glass phase coexistence, jamming, or the reentrance of the glass transition.
We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy $S_{2}$ positively correlates with observed rearrangements in colloidal glasses. The high $S_{2 }$ values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high $S_{2}$ spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high $S_{2}$ spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than $S_{2}$. Our experiments provide an efficient structural identifier for the fragile regions in glasses, and highlight the important role of structural correlations in the physics of glasses.
117 - Hajime Yoshino 2012
We discuss a microscopic scheme to compute the rigidity of glasses or the plateau modulus of supercooled liquids by twisting replicated liquids. We first summarize the method in the case of harmonic glasses with analytic potentials. Then we discuss h ow it can be extended to the case of repulsive contact systems : the hard sphere glass and related systems with repulsive contact potentials which enable the jamming transition at zero temperature. For the repulsive contact systems we find entropic rigidity which behaves similarly as the pressure in the low temperature limit: it is proportional to the temperature and tends to diverge approaching the jamming density with increasing volume fraction, which may account for experimental observations of rigidities of repulsive colloids and emulsions.
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or gr anular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا