ﻻ يوجد ملخص باللغة العربية
In this paper, we use a science fiction theme (i.e. the iconic lightsaber from the Star Wars universe) as a pedagogical tool to introduce aspects of nonlinear electrodynamics due to the quantum vacuum to an audience with an undergraduate physics background. In particular, we focus on one major problem with lightsabers that is commonly invoked as an argument to dismiss them as unrealistic: light blades are not solid and thus cannot be used in a duel as normal swords would. Using techniques coming from ultra intense laser science, we show that for high enough laser intensities, two lightsaber blades can `feel solid to each other. We argue that this aspect of lightsabers is not impossible due to limitations of the laws of physics, but is very implausible due to the high intensities and energy needed for their operation.
Our proposed experiment aimed to test the validity of the Lorentz factor with two methods: The time of flight (TOF) of various particles at different momenta and the decay rate of pions at different momenta. Due to the high sensitivity required for t
A century after observing the deflection of light emitted by distant stars during the solar eclipse of 1919, it is interesting to know the concepts emerged from the experiment and the theoretical and observational consequences for modern cosmology an
Pyramids are the greatest architectural achievement of ancient civilization, so people all over the world are curious as to the purpose of such huge constructions. No other structure has been studied as thoroughly, nor have so many books and articles
The great conjunction of 21 December 2020 saw Jupiter and Saturn appear together in the sky, separated by just a tenth of a degree (equivalent to a distance five times smaller than the diameter of the full Moon). This provided a potential once-in-a-l
It is shown how repeated observations of the sunset from various points up a tall building can be used to determine the Earths radius. The same observations can also be used, at some latitudes, to deduce an approximate value for the amount of atmospheric refraction at the horizon.