ﻻ يوجد ملخص باللغة العربية
The mitotic spindle lies at the heart of the spatio-temporal control over cellular components during cell division. The spindle consists of microtubules, which are not only crosslinked by motor proteins but also by passive binding proteins. These passive crosslinkers stabilize the highly dynamic mitotic spindle by generating friction forces between sliding filaments. However, it remains unclear how the friction coefficient depends on the number of crosslinkers and the size of the overlap between the microtubules. Here, we use theory and computer simulations to study the friction between two filaments that are crosslinked by passive proteins, which can hop between neighboring binding sites while physically excluding each other. The simulations reveal that the movement of one microtubule relative to the other is limited by free-energy barrier crossings, causing rare and discrete jumps of the microtubule that span the distance between adjacent crosslinker binding sites. We derive an exact analytical expression for the free-energy landscape and identify the reaction coordinate that governs the relative movement, which allows us to determine the effective barrier height for the microtubule jumps. Both through simulations and reaction rate theory, we make the experimentally testable prediction that the friction between the microtubules increases superexponentially with the density of crosslinkers.
In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to th
Flagella of eukaryotic cells are transient long cylindrical protrusions. The proteins needed to form and maintain flagella are synthesized in the cell body and transported to the distal tips. What `rulers or `timers a specific type of cells use to st
Living systems need to be highly responsive, and also to keep fluctuations low. These goals are incompatible in equilibrium systems due to the Fluctuation Dissipation Theorem (FDT). Here, we show that biological sensory systems, driven far from equil
Virus capsids in interchromatin corrals of a cell nucleus are experimentally known to exhibit anomalous diffusion as well as normal diffusion, leading to the Gaussian distribution of the diffusion-exponent fluctuations over the corrals. Here, the soj
Cell polarization underlies many cellular processes, such as differentiation, migration, and budding. Many living cells, such as budding yeast and fission yeast, use cytoskeletal structures to actively transport proteins to one location on the membra