ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent Cosmological Constraints from high-z HII Galaxies

126   0   0.0 ( 0 )
 نشر من قبل Ana Luisa Gonz\\'alez-Mor\\'an
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new high spectral resolution observations of 15 high-z ($1.3 leq$ z $leq 2.5$) HII Galaxies (HIIG) obtained with MOSFIRE at the Keck Observatory. These data, combined with already published data for another 31 high-z and 107 z $leq 0.15$ HIIG, are used to obtain new independent cosmological results using the distance estimator based on the established correlation between the Balmer emission line velocity dispersion and luminosity for HIIG. Our results are in excellent agreement with the latest cosmological concordance model ($Lambda$CDM) published results. From our analysis, we find a value for the mass density parameter of $Omega_m=0.290^{+0.056}_{-0.069}$ (stat). For a flat Universe we constrain the plane $lbraceOmega_m;w_0rbrace = lbrace 0.280^{+0.130}_{-0.100} ; -1.12^{+0.58}_{-0.32}rbrace $ (stat). The joint likelihood analysis of HIIG with other complementary cosmic probes (Cosmic Microwave Background and Baryon Acoustic Oscillations) provides tighter constraints for the parameter space of the Equation of State of Dark Energy that are also in excellent agreement with those of similar analyses using Type Ia Supernovae instead as the geometrical probe.



قيم البحث

اقرأ أيضاً

We present independent determinations of cosmological parameters using the distance estimator based on the established correlation between the Balmer line luminosity, L(H$beta$), and the velocity dispersion ($sigma$) for HII galaxies (HIIG). These re sults are based on new VLT-KMOS high spectral resolution observations of 41 high-z ($1.3 leq$ z $leq 2.6$) HIIG combined with published data for 45 high-z and 107 z $leq 0.15$ HIIG, while the cosmological analysis is based on the MultiNest MCMC procedure not considering systematic uncertainties. Using only HIIG to constrain the matter density parameter ($Omega_m$), we find $Omega_m = 0.244^{+0.040}_{-0.049}$ (stat), an improvement over our best previous cosmological parameter constraints, as indicated by a 37% increase of the FoM. The marginalised best-fit parameter values for the plane ${Omega_m; w_0}$ = ${0.249^{+0.11}_{-0.065}; -1.18^{+0.45}_{-0.41}}$ (stat) show an improvement of the cosmological parameters constraints by 40%. Combining the HIIG Hubble diagram, the cosmic microwave background (CMB) and the baryon acoustic oscillation (BAO) probes yields $Omega_m=0.298 pm 0.012$ and $w_0=-1.005 pm 0.051$, which are certainly compatible -- although less constraining -- than the solution based on the joint analysis of SNIa/CMB/BAO. An attempt to constrain the evolution of the dark energy with time (CPL model), using a joint analysis of the HIIG, CMB and BAO measurements, shows a degenerate 1$sigma$ contour of the parameters in the ${w_0,w_a}$ plane.
We use HII starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of HII galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter mea surements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $Omega_{rm m_0}$ and the Hubble constant $H_0$. These estimates favor a 2.0$sigma$ to 3.4$sigma$ (depending on cosmological model) lower $H_0$ than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.
Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, $Omega_mathrm{m},gamma$, and $sigma_8$. The cons traints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.
Several authors have reported that the dynamical masses of massive compact galaxies ($M_star gtrsim 10^{11} mathrm{M_odot}$, $r_mathrm{e} sim 1 mathrm{kpc}$), computed as $M_mathrm{dyn} = 5.0 sigma_mathrm{e}^2 r_mathrm{e} / G$, are lower than thei r stellar masses $M_star$. In a previous study from our group, the discrepancy is interpreted as a breakdown of the assumption of homology that underlie the $M_mathrm{dyn}$ determinations. Here, we present new spectroscopy of six redshift $z approx 1.0$ massive compact ellipticals from the Extended Groth Strip, obtained with the 10.4 m Gran Telescopio Canarias. We obtain velocity dispersions in the range $161-340 mathrm{km s^{-1}}$. As found by previous studies of massive compact galaxies, our velocity dispersions are lower than the virial expectation, and all of our galaxies show $M_mathrm{dyn} < M_star$ (assuming a Salpeter initial mass function). Adding data from the literature, we build a sample covering a range of stellar masses and compactness in a narrow redshift range $mathit{z approx 1.0}$. This allows us to exclude systematic effects on the data and evolutionary effects on the galaxy population, which could have affected previous studies. We confirm that mass discrepancy scales with galaxy compactness. We use the stellar mass plane ($M_star$, $sigma_mathrm{e}$, $r_mathrm{e}$) populated by our sample to constrain a generic evolution mechanism. We find that the simulations of the growth of massive ellipticals due to mergers agree with our constraints and discard the assumption of homology.
We present a radio continuum study of a population of extremely young and starburst galaxies, termed as blueberries at ${sim}$ 1 GHz using the upgraded Giant Metrewave Radio Telescope (uGMRT). We find that their radio-based star formation rate (SFR) is suppressed by a factor of ${sim}$ 3.4 compared to the SFR based on optical emission lines. This might be due to (i) the young ages of these galaxies as a result of which a stable equilibrium via feedback from supernovae has not yet been established (ii) escape of cosmic ray electrons via diffusion or galactic scale outflows. The estimated non-thermal fraction in these galaxies has a median value of ${sim}$0.49, which is relatively lower than that in normal star-forming galaxies at such low frequencies. Their inferred equipartition magnetic field has a median value of 27 ${mu}$G, which is higher than those in more evolved systems like spiral galaxies. Such high magnetic fields suggest that small-scale dynamo rather than large-scale dynamo mechanisms might be playing a major role in amplifying magnetic fields in these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا