ﻻ يوجد ملخص باللغة العربية
Phosphorene, a single layer of black phosphorous (BLK-P), has a significant potential for flexible and tunable electronics, but attempts to grow it epitaxially have been unsuccessful to date. Meanwhile, hexagonal blue phoshorous (BL-P) has been achieved on closed-packed (111) metal surfaces in special growth conditions of high vapor pressure and high reactivity of phosphorous. The (111) surfaces favors BL-P over BLK-P due to its hexagonal symmetry. Here, we investigate computationally the alternative offered by stepped substrates. Using the Cu(311) surface as a model, we find that surface steps can favor energetically BLK-P over BL-P. This can be rationalized in terms of surface density of states and orbital hybridization, which lead to a stronger surface bonding of the lower BLK-P half-layer. This work suggests that vicinal metal surfaces of metals can offer a viable path towards phosphorene synthesis.
Phosphorene has been attracted intense interest due to its unexpected high carrier mobility and distinguished anisotropic optoelectronic and electronic properties. In this work, we unraveled strain engineered phosphorene as a photocatalyst in the app
Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of opt
The structural and electronic properties of hexagonal boron nitride (hBN) grown on stepped Ni surfaces are systematically investigated using a cylindrical Ni crystal as a tunable substrate. Our experiments reveal homogeneous hBN monolayer coating of
The energetics of vicinal SrTiO$_3$(001) and DyScO$_3$(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statisti
Here we present a novel approach to control magnetic interactions in atomic-scale nanowires. Our ab initio calculations demonstrate the possibility to tune magnetic properties of Fe nanowires formed on vicinal Cu surfaces. Both intrawire and interwir