ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Web browsing: supporting frequent uses and opportunistic requirements

78   0   0.0 ( 0 )
 نشر من قبل Marco Winckler
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sergio Firmenich




اسأل ChatGPT حول البحث

Nowadays, the development of Web applications supporting distributed user interfaces (DUI) is straightforward. However, it is still hard to find Web sites supporting this kind of user interaction. Although studies on this field have demonstrated that DUI would improve the user experience, users are not massively empowered to manage these kinds of interactions. In this setting, we propose to move the responsibility of distributing both the UI and user interaction, from the application (a Web application) to the client (the Web browser), giving also rise to inter-application interaction distribution. This paper presents a platform for client-side DUI, built on the foundations of Web augmentation and End User Development. The idea is to empower end users to apply an augmentation layer over existing Web applications, considering both frequent use and opportunistic DUI requirements. In this work, we present the architecture and a prototype tool supporting this approach and illustrate the incorporation of some DUI features through case studies.



قيم البحث

اقرأ أيضاً

Getting deeper insights into the online browsing behavior of Web users has been a major research topic since the advent of the WWW. It provides useful information to optimize website design, Web browser design, search engines offerings, and online ad vertisement. We argue that new technologies and new services continue to have significant effects on the way how people browse the Web. For example, listening to music clips on YouTube or to a radio station on Last.fm does not require users to sit in front of their computer. Social media and networking sites like Facebook or micro-blogging sites like Twitter have attracted new types of users that previously were less inclined to go online. These changes in how people browse the Web feature new characteristics which are not well understood so far. In this paper, we provide novel and unique insights by presenting first results of DOBBS, our long-term effort to create a comprehensive and representative dataset capturing online user behavior. We firstly investigate the concepts of parallel browsing and passive browsing, showing that browsing the Web is no longer a dedicated task for many users. Based on these results, we then analyze their impact on the calculation of a users dwell time -- i.e., the time the user spends on a webpage -- which has become an important metric to quantify the popularity of websites.
Clickstreams on individual websites have been studied for decades to gain insights into user interests and to improve website experiences. This paper proposes and examines a novel sequence modeling approach for web clickstreams, that also considers m ulti-tab branching and backtracking actions across websites to capture the full action sequence of a user while browsing. All of this is done using machine learning on the client side to obtain a more comprehensive view and at the same time preserve privacy. We evaluate our formalism with a model trained on data collected in a user study with three different browsing tasks based on different human information seeking strategies from psychological literature. Our results show that the model can successfully distinguish between browsing behaviors and correctly predict future actions. A subsequent qualitative analysis identified five common web browsing patterns from our collected behavior data, which help to interpret the model. More generally, this illustrates the power of overparameterization in ML and offers a new way of modeling, reasoning with, and prediction of observable sequential human interaction behaviors.
Understanding how people interact with the web is key for a variety of applications, e.g., from the design of effective web pages to the definition of successful online marketing campaigns. Browsing behavior has been traditionally represented and stu died by means of clickstreams, i.e., graphs whose vertices are web pages, and edges are the paths followed by users. Obtaining large and representative data to extract clickstreams is however challenging. The evolution of the web questions whether browsing behavior is changing and, by consequence, whether properties of clickstreams are changing. This paper presents a longitudinal study of clickstreams in from 2013 to 2016. We evaluate an anonymized dataset of HTTP traces captured in a large ISP, where thousands of households are connected. We first propose a methodology to identify actual URLs requested by users from the massive set of requests automatically fired by browsers when rendering web pages. Then, we characterize web usage patterns and clickstreams, taking into account both the temporal evolution and the impact of the device used to explore the web. Our analyses precisely quantify various aspects of clickstreams and uncover interesting patterns, such as the typical short paths followed by people while navigating the web, the fast increasing trend in browsing from mobile devices and the different roles of search engines and social networks in promoting content. Finally, we contribute a dataset of anonymized clickstreams to the community to foster new studies (anonymized clickstreams are available to the public at http://bigdata.polito.it/clickstream).
The remote work ecosystem is transforming patterns of communication between teams and individuals located at distance. Particularly, the absence of certain subtle cues in current communication tools may hinder an onlines meeting outcome by negatively impacting attendees overall experience and, often, make them feeling disconnected. The problem here might be due to the fact that current tools fall short in capturing it. To partly address this, we developed an online platform-MeetCues-with the aim of supporting online communication during meetings. MeetCues is a companion platform for a commercial communication tool with interactive and visual UI features that support back-channels of communications. It allows attendees to be more engaged during a meeting, and reflect in real-time or post-meeting. We evaluated our platform in a diverse set of five, real-world corporate meetings, and we found that, not only people were more engaged and aware during their meetings, but they also felt more connected. These findings suggest promise in the design of new communications tools, and reinforce the role of InfoVis in augmenting and enriching online meetings.
Motives or goals are recognized in psychology literature as the most fundamental drive that explains and predicts why people do what they do, including when they browse the web. Although providing enormous value, these higher-ordered goals are often unobserved, and little is known about how to leverage such goals to assist peoples browsing activities. This paper proposes to take a new approach to address this problem, which is fulfilled through a novel neural framework, Goal-directed Web Browsing (GoWeB). We adopt a psychologically-sound taxonomy of higher-ordered goals and learn to build their representations in a structure-preserving manner. Then we incorporate the resulting representations for enhancing the experiences of common activities people perform on the web. Experiments on large-scale data from Microsoft Edge web browser show that GoWeB significantly outperforms competitive baselines for in-session web page recommendation, re-visitation classification, and goal-based web page grouping. A follow-up analysis further characterizes how the variety of human motives can affect the difference observed in human behavioral patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا