ترغب بنشر مسار تعليمي؟ اضغط هنا

TalkSumm: A Dataset and Scalable Annotation Method for Scientific Paper Summarization Based on Conference Talks

112   0   0.0 ( 0 )
 نشر من قبل Guy Lev
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, no large-scale training data is available for the task of scientific paper summarization. In this paper, we propose a novel method that automatically generates summaries for scientific papers, by utilizing videos of talks at scientific conferences. We hypothesize that such talks constitute a coherent and concise description of the papers content, and can form the basis for good summaries. We collected 1716 papers and their corresponding videos, and created a dataset of paper summaries. A model trained on this dataset achieves similar performance as models trained on a dataset of summaries created manually. In addition, we validated the quality of our summaries by human experts.



قيم البحث

اقرأ أيضاً

Faceted summarization provides briefings of a document from different perspectives. Readers can quickly comprehend the main points of a long document with the help of a structured outline. However, little research has been conducted on this subject, partially due to the lack of large-scale faceted summarization datasets. In this study, we present FacetSum, a faceted summarization benchmark built on Emerald journal articles, covering a diverse range of domains. Different from traditional document-summary pairs, FacetSum provides multiple summaries, each targeted at specific sections of a long document, including the purpose, method, findings, and value. Analyses and empirical results on our dataset reveal the importance of bringing structure into summaries. We believe FacetSum will spur further advances in summarization research and foster the development of NLP systems that can leverage the structured information in both long texts and summaries.
We present a novel system providing summaries for Computer Science publications. Through a qualitative user study, we identified the most valuable scenarios for discovery, exploration and understanding of scientific documents. Based on these findings , we built a system that retrieves and summarizes scientific documents for a given information need, either in form of a free-text query or by choosing categorized values such as scientific tasks, datasets and more. Our system ingested 270,000 papers, and its summarization module aims to generate concise yet detailed summaries. We validated our approach with human experts.
With the explosive growth of livestream broadcasting, there is an urgent need for new summarization technology that enables us to create a preview of streamed content and tap into this wealth of knowledge. However, the problem is nontrivial due to th e informal nature of spoken language. Further, there has been a shortage of annotated datasets that are necessary for transcript summarization. In this paper, we present StreamHover, a framework for annotating and summarizing livestream transcripts. With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora. We explore a neural extractive summarization model that leverages vector-quantized variational autoencoder to learn latent vector representations of spoken utterances and identify salient utterances from the transcripts to form summaries. We show that our model generalizes better and improves performance over strong baselines. The results of this study provide an avenue for future research to improve summarization solutions for efficient browsing of livestreams.
Lay summarization aims to generate lay summaries of scientific papers automatically. It is an essential task that can increase the relevance of science for all of society. In this paper, we build a lay summary generation system based on the BART mode l. We leverage sentence labels as extra supervision signals to improve the performance of lay summarization. In the CL-LaySumm 2020 shared task, our model achieves 46.00% Rouge1-F1 score.
Quickly moving to a new area of research is painful for researchers due to the vast amount of scientific literature in each field of study. One possible way to overcome this problem is to summarize a scientific topic. In this paper, we propose a mode l of summarizing a single article, which can be further used to summarize an entire topic. Our model is based on analyzing others viewpoint of the target articles contributions and the study of its citation summary network using a clustering approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا