ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin chain network construction of chiral spin liquids

93   0   0.0 ( 0 )
 نشر من قبل Rodrigo Pereira
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a honeycomb lattice of Heisenberg spin-$1/2$ chains with three-spin junction interactions allows for controlled analytical studies of chiral spin liquids (CSLs). Tuning these interactions to a chiral fixed point, we find a Kalmeyer-Laughlin CSL phase which here is connected to the critical point of a boundary conformal field theory. Our construction directly yields a quantized spin Hall conductance and localized spinons with semionic statistics as elementary excitations. We also outline the phase diagram away from the chiral point where spinons may condense. Generalizations of our approach can provide microscopic realizations for many other CSLs.



قيم البحث

اقرأ أيضاً

We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our appro ach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground state degeneracy on the torus signalling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
We suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids - spin-analogues of fractional non-Abelian quantum Hall states- with gapped bulk and gapless chiral edge excitations described by the SU( 2)$_n$ Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of a generalized spin-$n/2$ ladders with multi-spin exchange interaction which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2)$_n$ gapless edge excitations.
513 - Krishna Kumar , Kai Sun , 2015
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin $S=1/2$. We then introduce a systematic generalization of the approach for symmetric $mathbb{Z}_2$ quantum spin l iquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral $mathbb{Z}_2$ states, we study the subset of U(1) phases variationally in the antiferromagnetic $J_1$-$J_2$-$J_d$ Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.
We provide new insights into the Abelian and non-Abelian chiral Kitaev spin liquids on the star lattice using the recently proposed loop gas (LG) and string gas (SG) states [H.-Y. Lee, R. Kaneko, T. Okubo, N. Kawashima, Phys. Rev. Lett. 123, 087203 ( 2019)]. Those are compactly represented in the language of tensor network. By optimizing only one or two variational parameters, accurate ansatze are found in the whole phase diagram of the Kitaev model on the star lattice. In particular, the variational energy of the LG state becomes exact(within machine precision) at two limits in the model, and the criticality at one of those is analytically derived from the LG feature. It reveals that the Abelian CSLs are well demonstrated by the short-ranged LG while the non-Abelian CSLs are adiabatically connected to the critical LG where the macroscopic loops appear. Furthermore, by constructing the minimally entangled states and exploiting their entanglement spectrum and entropy, we identify the nature of anyons and the chiral edge modes in the non-Abelian phase with the Ising conformal field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا