ﻻ يوجد ملخص باللغة العربية
We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-modules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the $widehat{Gamma}$-integral structure, to an Orlov-type semiorthogonal decomposition of topological $K$-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms of a Riemann-Hilbert problem.
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-M
Motivated by the S-duality conjecture of Vafa-Witten, Tanaka-Thomas have developed a theory of Vafa-Witten invariants for projective surfaces using the moduli space of Higgs sheaves. Their definition and calculation prove the S-duality prediction of
We prove a Givental-style mirror theorem for toric Deligne--Mumford stacks X. This determines the genus-zero Gromov--Witten invariants of X in terms of an explicit hypergeometric function, called the I-function, that takes values in the Chen--Ruan orbifold cohomology of X.
We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic $p>0$ and generalize Langers method to smooth Deligne-Mumford stack