ﻻ يوجد ملخص باللغة العربية
Let $R=K[X_1,ldots, X_n]$ where $K$ is a field of characteristic zero, and let $A_n(K)$ be the $n^{th}$ Weyl algebra over $K$. We give standard grading on $R$ and $A_n(K)$. Let $I$, $J$ be homogeneous ideals of $R$. Let $M = H^i_I(R)$ and $N = H^j_J(R)$ for some $i, j$. We show that $Ext_{A_n(K)}^{ u}(M,N)$ is concentrated in degree zero for all $ u geq 0$, i.e., $Ext_{A_n(K)}^{ u}(M,N)_l=0$ for $l eq0$. This proves a conjecture stated in part I of this paper.
Let $A$ be a commutative Noetherian ring containing a field $K$ of characteristic zero and let $R= A[X_1, ldots, X_m]$. Consider $R$ as standard graded with $deg A=0$ and $deg X_i=1$ for all $i$. We present a few results about the behavior of the gra
Let $A$ be a regular ring containing a field $K$ of characteristic zero and let $R = A[X_1,ldots, X_m]$. Consider $R$ as standard graded with $deg A = 0$ and $deg X_i = 1$ for all $i$. Let $G$ be a finite subgroup of $GL_m(A)$. Let $G$ act linearly o
Let $A$ be a regular domain containing a field $K$ of characteristic zero, $G$ be a finite subgroup of the group of automorphisms of $A$ and $B=A^G$ be the ring of invariants of $G$. Let $S= A[X_1,ldots, X_m]$ and $R= B[X_1, ldots, X_m]$ be standard
We study the conditions under which the highest nonvanishing local cohomology module of a domain $R$ with support in an ideal $I$ is faithful over $R$, i.e., which guarantee that $H^c_I(R)$ is faithful, where $c$ is the cohomological dimension of $I$
In their work on differential operators in positive characteristic, Smith and Van den Bergh define and study the derived functors of differential operators; they arise naturally as obstructions to differential operators reducing to positive character