ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral dimension on spatial hypersurfaces in causal set quantum gravity

83   0   0.0 ( 0 )
 نشر من قبل Astrid Eichhorn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An important probe of quantum geometry is its spectral dimension, defined via a spatial diffusion process. In this work we study the spectral dimension of a ``spatial hypersurface in a manifoldlike causal set using the induced spatial distance function. In previous work, the diffusion was taken on the full causal set, where the nearest neighbours are unbounded in number. The resulting super-diffusion leads to an increase in the spectral dimension at short diffusion times, in contrast to other approaches to quantum gravity. In the current work, by using a temporal localisation in the causal set, the number of nearest spatial neighbours is rendered finite. Using numerical simulations of causal sets obtained from $d=3$ Minkowski spacetime, we find that for a flat spatial hypersurface, the spectral dimension agrees with the Hausdorff dimension at intermediate scales, but shows clear indications of dimensional reduction at small scales, i.e., in the ultraviolet. The latter is a direct consequence of ``discrete asymptotic silence at small scales in causal sets.



قيم البحث

اقرأ أيضاً

113 - Sumati Surya 2019
The causal set theory (CST) approach to quantum gravity postulates that at the most fundamental level, spacetime is discrete, with the spacetime continuum replaced by locally finite posets or causal sets. The partial order on a causal set represents a proto-causality relation while local finiteness encodes an intrinsic discreteness. In the continuum approximation the former corresponds to the spacetime causality relation and the latter to a fundamental spacetime atomicity, so that finite volume regions in the continuum contain only a finite number of causal set elements. CST is deeply rooted in the Lorentzian character of spacetime, where a primary role is played by the causal structure poset. Importantly, the assumption of a fundamental discreteness in CST does not violate local Lorentz invariance in the continuum approximation. On the other hand, the combination of discreteness and Lorentz invariance gives rise to a characteristic non-locality which distinguishes CST from most other approaches to quantum gravity. In this review we give a broad, semi-pedagogical introduction to CST, highlighting key results as well as some of the key open questions. This review is intended both for the beginner student in quantum gravity as well as more seasoned researchers in the field.
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quant ities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density $L(f;x)$ for a set of fields $f$ is recast into a quasilocal expression $L_0(f;p,q)$ that depends on pairs of causally related points $p prec q$ and is a function of the values of $f$ in the Alexandrov set defined by those points, and whose limit as $p$ and $q$ approach a common point $x$ is $L(f;x)$. We then describe how to discretize $L_0(f;p,q)$, and use it to define a discrete action.
We study dimensionally restricted non-perturbative causal set quantum dynamics in $2$ and $3$ spacetime dimensions with non-trivial global spatial topology. The causal set sample space is generated from causal embeddings into spacetime lattices w ith global spatial topology $S^1$ and $T^2$ in $2$ and $3$ dimensions, respectively. The quantum gravity partition function over these sample spaces is studied using Markov Chain Monte Carlo (MCMC) simulations after analytic continuation. In both $2$ and $3$ dimensions we find a phase transition that separates the dominance of the action from that of the entropy. The action dominated phase is characterised by ``layered posets with a high degree of connectivity, while the causal sets in the entropy dominated phase are manifold-like. This phase transition is similar in character to that seen for the sample space of $2$-orders, which are topologically trivial, hence suggesting that this is a generic feature of dimensionally restricted sample spaces. The simulations use a newly developed framework for causal set MCMC calculations. Ours is the first implementation of a causal set dynamics restricted to $3$ dimensions.
We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.
112 - Achim Kempf , Robert Martin 2007
We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا