ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Charge-Resolved Entanglement after a Local Quench

390   0   0.0 ( 0 )
 نشر من قبل Noa Feldman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement and its main quantitative measures, the entanglement entropy and entanglement negativity, play a central role in many body physics. An interesting twist arises when the system considered has symmetries leading to conserved quantities: Recent studies introduced a way to define, represent in field theory, calculate for 1+1D conformal systems, and measure, the contribution of individual charge sectors to the entanglement measures between different parts of a system in its ground state. In this paper, we apply these ideas to the time evolution of the charge-resolved contributions to the entanglement entropy and negativity after a local quantum quench. We employ conformal field theory techniques and find that the known dependence of the total entanglement on time after a quench, $S_A sim log(t)$, results from $simsqrt{log(t)}$ significant charge sectors, each of which contributes $simsqrt{log(t)}$ to the entropy. We compare our calculation to numerical results obtained by the time-dependent density matrix renormalization group algorithm and exact solution in the noninteracting limit, finding good agreement between all these methods.

قيم البحث

اقرأ أيضاً

We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be desc ribed by means of quantum field theory. In the case when the corresponding theory is conformal, we study the evolution of the entanglement entropy for different bi-partitions of the line. We also consider the behavior of one- and two-point correlation functions. All our findings may be explained in terms of a picture, that we believe to be valid more generally, whereby quasiparticles emitted from the joining point at the initial time propagate semiclassically through the system.
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th e negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.
The study of the entanglement dynamics plays a fundamental role in understanding the behaviour of many-body quantum systems out of equilibrium. In the presence of a globally conserved charge, further insights are provided by the knowledge of the reso lution of entanglement in the various symmetry sectors. Here, we carry on the program we initiated in Phys. Rev. B 103, L041104 (2021), for the study of the time evolution of the symmetry resolved entanglement in free fermion systems. We complete and extend our derivations also by defining and quantifying a symmetry resolved mutual information. The entanglement entropies display a time delay that depends on the charge sector that we characterise exactly. Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size. Furthermore, we argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement, and hence we expect that a proper adaptation of our results should apply to a large class of integrable systems. We also find that the number entropy grows logarithmically with time before saturating to a value proportional to the logarithm of the subsystem size.
We discuss the hydrodynamic approach to the study of the time evolution -induced by a quench- of local excitations in one dimension. We focus on interaction quenches: the considered protocol consists in creating a stable localized excitation propagat ing through the system, and then operating a sudden change of the interaction between the particles. To highlight the effect of the quench, we take the initial excitation to be a soliton. The quench splits the excitation into two packets moving in opposite directions, whose characteristics can be expressed in a universal way. Our treatment allows to describe the internal dynamics of these two packets in terms of the different velocities of their components. We confirm our analytical predictions through numerical simulations performed with the Gross-Pitaevskii equation and with the Calogero model (as an example of long range interactions and solvable with a parabolic confinement). Through the Calogero model we also discuss the effect of an external trapping on the protocol. The hydrodynamic approach shows that there is a difference between the bulk velocities of the propagating packets and the velocities of their peaks: it is possible to discriminate the two quantities, as we show through the comparison between numerical simulations and analytical estimates. In the realizations of the discussed quench protocol in a cold atom experiment, these different velocities are accessible through different measurement procedures.
We consider the variation of von Neumann entropy of subsystem reduced states of general many- body lattice spin systems due to local quantum quenches. We obtain Lieb-Robinson-like bounds that are independent of the subsystem volume. The main assumpti ons are that the Hamiltonian satisfies a Lieb-Robinson bound and that the volume of spheres on the lattice grows at most exponentially with their radius. More specifically, the bound exponentially increases with time but exponentially decreases with the distance between the subsystem and the region where the quench takes place. The fact that the bound is independent of the subsystem volume leads to stronger constraints (than previously known) on the propagation of information throughout many-body systems. In particular, it shows that bipartite entanglement satisfies an effective light cone, regardless of system size. Further implications to t density-matrix renormalization-group simulations of quantum spin chains and limitations to the propagation of information are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا