ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly stable linearly polarized arbitrary temporal shaping of picosecond laser pulses

74   0   0.0 ( 0 )
 نشر من قبل Fangming Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports the study and demonstration of a new variable temporal shaping method capable of generating linearly polarized picosecond laser pulses with arbitrary predefined shapes, which are highly desired by various applications including low emittance high brightness electron bunch generation in photocathode guns. It is found that both high transmittance and high stability of the shaped pulses can be achieved simultaneously when birefringent stages (BSs) are set at specific phase delay. Such variable temporal shaping technique may lead to new opportunities for many potential applications over a wide range of laser wavelengths, pulse repetition rates, time structures and power levels, etc. In addition, a new double-pass variable temporal shaping method is also proposed and could significantly simplify the shaper structure and reduce the cost.

قيم البحث

اقرأ أيضاً

This paper describes the demonstration of linearly polarized picosecond pulse shaping with variable profiles including symmetric and non-symmetric intensity distributions. Important characteristics such as stability and transmission were studied, res ulting in highly reliable performance of this fan-type birefringent shaping system. This variable temporal shaping technique is applicable over a wide range of laser parameters and may lead to new opportunities for many potential applications. A new double-pass variable temporal shaping method that significantly reduces the required crystal quantity is also proposed in this paper.
We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely m anipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.
So far, selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has relied on using circularly polarized fields. We theoretically demonstrate a way to induce, control, and read valley polarization in hex agonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier-envelope phase. The valley pseudospin is encoded in the helicity of the emitted high harmonics of the driving pulse, allowing one to avoid additional probe pulses and permitting one to induce, manipulate and read the valley pseudospin all-optically, in one step. High circularity of the harmonic emission offers a method to generate highly elliptic attosecond pulses with a linearly polarized driver, in an all-solid-state setup.
Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating li nearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.
175 - Ziting Li , Bin Zeng , Wei Chu 2015
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited el ectronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا