ترغب بنشر مسار تعليمي؟ اضغط هنا

An Air-Stable and Atomically Thin Graphene/Gallium Superconducting Heterostructure

85   0   0.0 ( 0 )
 نشر من قبل Brian Bersch
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional layered and atomically thin elemental superconductors may be key ingredients in next-generation quantum technologies, if they can be stabilized and integrated into heterostructured devices under ambient conditions. However, atomically thin elemental superconductors are largely unexplored outside ultra-high vacuum due to rapid oxidation, and even 2D layered superconductors require complex encapsulation strategies to maintain material quality. Here we demonstrate environmentally stable, single-crystal, few-atom-thick superconducting gallium, 2D-Ga, produced by confinement heteroepitaxy (CHet) at the interface of epitaxial graphene (EG) and silicon carbide (SiC). 2D-Ga becomes superconducting at 4 K; this elevation over bulk alpha-Ga (Tc~1 K) is primarily attributed to an increased density of states at the Fermi level as the incipient Ga-Ga dimerization seen in alpha-Ga is suppressed by epitaxy to SiC. We also demonstrate the importance of controlling SiC surface morphology (i.e. step height) and defect-engineering in graphene layers prior to intercalation to achieve large-area uniform 2D-Ga layers with isotropic transport properties. This work demonstrates that unique 2D forms of 3D materials can be stabilized at the EG/SiC interface, which represents a scalable route towards air-stable crystalline 2D superconductors as a potential foundation for next-generation quantum technologies.

قيم البحث

اقرأ أيضاً

Van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potenti al for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless bandstructure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 1011 Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.
Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PHn, n = 1-6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH2 and H2. Three metallic PH2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2/m symmetry (5FU-C2/m). It is comprised of 1D periodic PH3-PH-PH2-PH-PH3 oligomers. Two structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4/mmm and 2FU-C2/m) were the most stable phases between ~160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, u*. Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.
We present numerical and analytical studies of coupled nonlinear Maxwell and thermal diffusion equations which describe nonisothermal dendritic flux penetration in superconducting films. We show that spontaneous branching of propagating flux filament s occurs due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heat generation. The branching is triggered by a thermomagnetic edge instability which causes stratification of the critical state. The resulting distribution of magnetic microavalanches depends on a spatial distribution of defects. Our results are in good agreement with experiments performed on Nb films.
322 - Heshan Yu , Jie Yuan , Beiyi Zhu 2017
The techniques of growing films with different parameters in single process make it possible to build up a sample library promptly. In this work, with a precisely controlled moving mask, we synthetized superconducting La2-xCexCuO4+/-{delta} combinato rial films on one SrTiO3 substrate with the doping levels from x = 0.1 to 0.19. The monotonicity in doping along the designed direction is verified by micro-region x-ray diffraction and electric transport measurements. More importantly, by means of numerical simulation, the real change of doping levels is in accordance with a linear gradient variation of doping levels in the La2-xCexCuO4+/-{delta} combinatorial films. Our results indicate that it is promising to accurately investigate materials with critical composition by combinatorial film technique.
It is well known that superconductivity in thin films is generally suppressed with decreasing thickness. This suppression is normally governed by either disorder-induced localization of Cooper pairs, weakening of Coulomb screening, or generation and unbinding of vortex-antivortex pairs as described by the Berezinskii-Kosterlitz-Thouless (BKT) theory. Defying general expectations, few-layer NbSe2 - an archetypal example of ultrathin superconductors - has been found to remain superconducting down to monolayer thickness. Here we report measurements of both the superconducting energy gap and critical temperature in high-quality monocrystals of few-layer NbSe2, using planar-junction tunneling spectroscopy and lateral transport. We observe a fully developed gap that rapidly reduces for devices with the number of layers N < 5, as does their ctitical temperature. We show that the observed reduction cannot be explained by disorder, and the BKT mechanism is also excluded by measuring its transition temperature that for all N remains very close to Tc. We attribute the observed behavior to changes in the electronic band structure predicted for mono- and bi- layer NbSe2 combined with inevitable suppression of the Cooper pair density at the superconductor-vacuum interface. Our experimental results for N > 2 are in good agreement with the dependences of the gap and Tc expected in the latter case while the effect of band-structure reconstruction is evidenced by a stronger suppression of the gap and the disappearance of its anisotropy for N = 2. The spatial scale involved in the surface suppression of the density of states is only a few angstroms but cannot be ignored for atomically thin superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا