ترغب بنشر مسار تعليمي؟ اضغط هنا

A fundamental test for stellar feedback recipes in galaxy simulations

89   0   0.0 ( 0 )
 نشر من قبل Yusuke Fujimoto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct comparisons between galaxy simulations and observations that both reach scales < 100 pc are strong tools to investigate the cloud-scale physics of star formation and feedback in nearby galaxies. Here we carry out such a comparison for hydrodynamical simulations of a Milky Way-like galaxy, including stochastic star formation, HII region and supernova feedback, and chemical post-processing at 8 pc resolution. Our simulation shows excellent agreement with almost all kpc-scale and larger observables, including total star formation rates, radial profiles of CO, HI, and star formation through the galactic disc, mass ratios of the ISM components, both whole-galaxy and resolved Kennicutt-Schmidt relations, and giant molecular cloud properties. However, we find that our simulation does not reproduce the observed de-correlation between tracers of gas and star formation on < 100 pc scales, known as the star formation uncertainty principle, which indicates that observed clouds undergo rapid evolutionary lifecycles. We conclude that the discrepancy is driven by insufficiently-strong pre-supernova feedback in our simulation, which does not disperse the surrounding gas completely, leaving star formation tracer emission too strongly associated with molecular gas tracer emission, inconsistent with observations. This result implies that the cloud-scale de-correlation of gas and star formation is a fundamental test for feedback prescriptions in galaxy simulations, one that can fail even in simulations that reproduce all other macroscopic properties of star-forming galaxies.

قيم البحث

اقرأ أيضاً

Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resol ution dependent scalings. We present a sub-resolution model representing the three major phases of supernova blast wave evolution $-$free expansion, energy conserving Sedov-Taylor, and momentum conserving snowplow$-$ with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, $f_{mathrm{hot}}$, as $(1 - f_{mathrm{hot}})^{-4/5}$. We also include winds from young massive stars and AGB stars, Stromgren sphere gas heating by massive stars, and a gas cooling limiting mechanism driven by radiative recombination of dense HII regions. We present initial tests for isolated Milky-Way like systems simulated with the GADGET based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a two order of magnitude variation in particle mass in the range (1.3$-$130)$times 10^4$ solar masses.
We explored the role of X-ray binaries composed by a black hole and a massive stellar companion (BHXs) as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects low metal-poor s tars ($Z = [0,10^{-4}]$) as possible progenitors. The model that better reproduces observations assumes that a $sim 20%$ fraction of low-metallicity black holes are in binary systems which produce BHXs. These sources are estimated to deposit $sim 10^{52}$ erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents $sim 30%$ of the total energy released by SNII and BHX events at redshift $zsim7$ and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than $sim 10^{10} ,M_{odot}$ (or $T_{rm vir} lesssim 10^5 $ K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range $10^7 - 10^8$ M$_odot$. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.
172 - Matthew C. Smith 2020
Galaxy formation simulations frequently use Initial Mass Function (IMF) averaged feedback prescriptions, where star particles are assumed to represent single stellar populations that fully sample the IMF. This approximation breaks down at high mass r esolution, where stochastic variations in stellar populations become important. We discuss various schemes to populate star particles with stellar masses explicitly sampled from the IMF. We use Monte Carlo numerical experiments to examine the ability of the schemes to reproduce an input IMF in an unbiased manner while conserving mass. We present our preferred scheme which can easily be added to pre-existing star formation prescriptions. We then carry out a series of high resolution isolated simulations of dwarf galaxies with supernovae, photoionization and photoelectric heating to compare the differences between using IMF averaged feedback and explicitly sampling the IMF. We find that if supernovae are the only form of feedback, triggering individual supernovae from IMF averaged rates gives identical results to IMF sampling. However, we find that photoionization is more effective at regulating star formation when IMF averaged rates are used, creating more, smaller H II regions than the rare, bright sources produced by IMF sampling. We note that the increased efficiency of the IMF averaged feedback versus IMF sampling is not necessarily a general trend and may be reversed depending on feedback channel, resolution and other details. However, IMF sampling is always the more physically motivated approach. We conservatively suggest that it should be used for star particles less massive than $sim500,mathrm{M_odot}$.
143 - E. Iani , A. Zanella , J. Vernet 2021
Giant star-forming regions (clumps) are widespread features of galaxies at $z approx 1-4$. Theory predicts that they can play a crucial role in galaxy evolution if they survive to stellar feedback for > 50 Myr. Numerical simulations show that clumps survival depends on the stellar feedback recipes that are adopted. Up to date, observational constraints on both clumps outflows strength and gas removal timescale are still uncertain. In this context, we study a line-emitting galaxy at redshift $z simeq 3.4$ lensed by the foreground galaxy cluster Abell 2895. Four compact clumps with sizes $lesssim$ 280 pc and representative of the low-mass end of clumps mass distribution (stellar masses $lesssim 2times10^8 {rm M}_odot$) dominate the galaxy morphology. The clumps are likely forming stars in a starbursting mode and have a young stellar population ($sim$ 10 Myr). The properties of the Lyman-$alpha$ (Ly$alpha$) emission and nebular far-ultraviolet absorption lines indicate the presence of ejected material with global outflowing velocities of $sim$ 200-300 km/s. Assuming that the detected outflows are the consequence of star formation feedback, we infer an average mass loading factor ($eta$) for the clumps of $sim$ 1.8 - 2.4 consistent with results obtained from hydro-dynamical simulations of clumpy galaxies that assume relatively strong stellar feedback. Assuming no gas inflows (semi-closed box model), the estimates of $eta$ suggest that the timescale over which the outflows expel the molecular gas reservoir ($simeq 7times 10^8 text{M}_odot$) of the four detected low-mass clumps is $lesssim$ 50 Myr.
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the m echanical energy input from a 15 solar mass star and a 40 solar mass star into a 100 pc-diameter 17000 solar mass cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 solar mass star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 solar mass star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 Myrs and 4.97 Myrs respectively, the massive stars explode as supernovae (SNe). In the 15 solar mass star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ~10^5 years before the SN remnant escapes the cloud. In the 40 solar mass star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar HII regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا