ترغب بنشر مسار تعليمي؟ اضغط هنا

Matter power spectrum: from Ly$alpha$ forest to CMB scales

91   0   0.0 ( 0 )
 نشر من قبل Sol\\`ene Chabanier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new compilation of inferences of the linear 3D matter power spectrum at redshift $z,{=},0$ from a variety of probes spanning several orders of magnitude in physical scale and in cosmic history. We develop a new lower-noise method for performing this inference from the latest Ly$alpha$ forest 1D power spectrum data. We also include cosmic microwave background (CMB) temperature and polarization power spectra and lensing reconstruction data, the cosmic shear two-point correlation function, and the clustering of luminous red galaxies. We provide a Dockerized Jupyter notebook housing the fairly complex dependencies for producing the plot of these data, with the hope that groups in the future can help add to it. Overall, we find qualitative agreement between the independent measurements considered here and the standard $Lambda$CDM cosmological model fit to the {it Planck} data



قيم البحث

اقرأ أيضاً

We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two m ethods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from $<z> = 2.2$ to $<z> = 4.4$, and scales from 0.001 $rm(km/s)^{-1}$ to $0.02 rm(km/s)^{-1}$. We determine the methodological and instrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2--3 for constraints on relevant cosmological parameters. For a $Lambda$CDM model and using a constraint on $H_0$ that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer $sigma_8 =0.83pm0.03$ and $n_s= 0.97pm0.02$ based on ion{H}{i} absorption in the range $2.1<z<3.7$.
The impact of cosmic reionization on the Ly$alpha$ forest power spectrum has recently been shown to be significant even at low redshifts ($z sim 2$). This memory of reionization survives cosmological time scales because high-entropy mean-density gas is heated to $sim 3times10^4$ K by reionization, which is inhomogeneous, and subsequent shocks from denser regions. In the near future, the first measurements of the Ly$alpha$ forest 3D power spectrum will be very likely achieved by upcoming observational efforts such as the Dark Energy Spectroscopic Instrument (DESI). In addition to abundant cosmological information, these observations have the potential to extract the astrophysics of reionization from the Ly$alpha$ forest. We forecast, for the first time, the accuracy with which the measurements of Ly$alpha$ forest 3D power spectrum can place constraints on the reionization parameters with DESI. Specifically, we demonstrate that the constraints on the ionization efficiency, $zeta$, and the threshold mass for haloes that host ionizing sources, $m_{rm turn}$, will have the $1sigma$ error at the level of $zeta = 25.0 pm 11.6$ and $log_{10} (m_{rm turn}/{rm M}_odot) = 8.7^{+0.36}_{-0.70}$, respectively. The Ly$alpha$ forest 3D power spectrum will thus provide an independent probe of reionization, probably even earlier in detection with DESI, with a sensitivity only slightly worse than the upcoming 21 cm power spectrum measurement with the Hydrogen Epoch of Reionization Array (HERA), i.e. $sigma_{rm DESI} / sigma_{rm HERA} approx 1.5$ for $zeta$ and $sigma_{rm DESI}/sigma_{rm HERA} approx 2.0$ for $log_{10}(m_{rm turn} / $M$_odot)$. Nevertheless, the Ly$alpha$ forest constraint will be improved about three times tighter than the current constraint from reionization observations with high-z galaxy priors.
We measure the 1D Ly$,alpha$ power spectrum poned from Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ), The Spectral Quasar Absorption Database (SQUAD) and XQ-100 quasars using the optimal quadratic estimator. We combine KODIA Q and SQUAD at the spectrum level, but perform a separate XQ-100 estimation to control its large resolution corrections in check. Our final analysis measures poned at scales $k<0.1,$s$,$km$^{-1}$ between redshifts $z=$ 2.0 -- 4.6 using 538 quasars. This sample provides the largest number of high-resolution, high-S/N observations; and combined with the power of optimal estimator it provides exceptional precision at small scales. These small-scale modes ($kgtrsim 0.02,$s$,$km$^{-1}$), unavailable in Sloan Digital Sky Survey (SDSS) and Dark Energy Spectroscopic Instrument (DESI) analyses, are sensitive to the thermal state and reionization history of the intergalactic medium, as well as the nature of dark matter. As an example, a simple Fisher forecast analysis estimates that our results can improve small-scale cut off sensitivity by more than a factor of 2.
Conventional wisdom was that thermal relics from the epoch of reionization (EOR) would vanish swiftly. Recently, however, it was shown that these relics can survive to lower redshifts ($z sim 2$) than previously thought, due to gas at mean density be ing heated to $T sim 3 times 10^4$ K by reionization, which is inhomogeneous, and shocks. Given the high sensitivities of upcoming Ly$alpha$ forest surveys, this effect will be a novel broadband systematic for cosmological application. From the astrophysical point of view, however, the imprint of inhomogeneous reionization can shed light on the EOR and cosmic dawn. We utilize a hybrid method -- which includes two different simulation codes capable of handling the huge dynamical range -- to show the impact of patchy reionization on the Ly$alpha$ forest and its dependence on different astrophysical scenarios. We found statistically significant deviations in the 1D Ly$alpha$ power spectrum at $k = 0.14$ cMpc$^{-1}$ that range from $sim 1%$ at $z = 2$ up to almost $sim 20%$ at $z = 4$. The deviations in the 3D Ly$alpha$ power spectrum, at the same wavenumber, are large and range from a few per cent at $z = 2$ up to $sim 50%$ at $z = 4$, although these deviations ignore the effect of He II reionization and AGN feedback at $z<4$. By exploiting different $k$-dependence of power spectrum among various astrophysical scenarios, the effect of patchy reionization on the Ly$alpha$ forest power spectrum can open a new window into cosmic reionization and possibly cosmic dawn.
We present the Lyman-$alpha$ flux power spectrum measurements of the XQ-100 sample of quasar spectra obtained in the context of the European Southern Observatory Large Programme Quasars and their absorption lines: a legacy survey of the high redshift universe with VLT/XSHOOTER. Using $100$ quasar spectra with medium resolution and signal-to-noise ratio we measure the power spectrum over a range of redshifts $z = 3 - 4.2$ and over a range of scales $k = 0.003 - 0.06,mathrm{s,km^{-1}}$. The results agree well with the measurements of the one-dimensional power spectrum found in the literature. The data analysis used in this paper is based on the Fourier transform and has been tested on synthetic data. Systematic and statistical uncertainties of our measurements are estimated, with a total error (statistical and systematic) comparable to the one of the BOSS data in the overlapping range of scales, and smaller by more than $50%$ for higher redshift bins ($z>3.6$) and small scales ($k > 0.01,mathrm{s,km^{-1}}$). The XQ-100 data set has the unique feature of having signal-to-noise ratios and resolution intermediate between the two data sets that are typically used to perform cosmological studies, i.e. BOSS and high-resolution spectra (e.g. UVES/VLT or HIRES). More importantly, the measured flux power spectra span the high redshift regime which is usually more constraining for structure formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا