ﻻ يوجد ملخص باللغة العربية
The Bohnenblust-Hille inequality and its variants have found applications in several areas of Mathematics and related fields. The control of the constants for the variant for complex $m$-homogeneous polynomials is of special interest for applications in Harmonic Analysis and Number Theory. Up to now, the best known estimates for its constants are dominated by $kappaleft(1+varepsilonright) ^{m}$, where $varepsilon>0$ is arbitrary and $kappa>0$ depends on the choice of $varepsilon$. For the special cases in which the number of variables in each monomial is bounded by some fixed number $M$, it has been shown that the optimal constant is dominated by a constant depending solely on $M$. In this note, based on a deep result of Bayart, we prove an inequality for any subset of the indices, showing how summability of arbitrary restrictions on monomials can be related to the combinatorial dimension associated with them.
In this paper we prove that the complex polynomial Bohnenblust-Hille constant for $2$-homogeneous polynomials in ${mathbb C}^2$ is exactly $sqrt[4]{frac{3}{2}}$. We also give the exact value of the real polynomial Bohnenblust-Hille constant for $2$-h
For the scalar field $mathbb{K}=mathbb{R}$ or $mathbb{C}$, the multilinear Bohnenblust--Hille inequality asserts that there exists a sequence of positive scalars $(C_{mathbb{K},m})_{m=1}^{infty}$ such that %[(sumlimits_{i_{1},...,i_{m}=1}^{N}|U(e_{i_
We show that a recent interpolative new proof of the Bohnenblust--Hille inequality, when suitably handled, recovers its best known constants. This seems to be unexpectedly surprising since the known interpolative approaches only provide constants hav
A number of sharp inequalities are proved for the space ${mathcal P}left(^2Dleft(frac{pi}{4}right)right)$ of 2-homogeneous polynomials on ${mathbb R}^2$ endowed with the supremum norm on the sector $Dleft(frac{pi}{4}right):=left{e^{itheta}:thetain le
We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum