ﻻ يوجد ملخص باللغة العربية
For an element $g$ of a group $G$, an Engel sink is a subset $mathcal{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathcal{E}(g)$. We conjecture that if $G$ is a profinite group in which every element admits a sink that is a procyclic subgroup, then $G$ is procyclic-by-(locally nilpotent). We prove the conjecture in two cases -- when $G$ is a finite group, or a soluble pro-$p$ group.
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an e
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group
The article deals with profinite groups in which centralizers are virtually procyclic. Suppose that G is a profinite group such that the centralizer of every nontrivial element is virtually torsion-free while the centralizer of every element of infin
We call $n$ a cyclic number if every group of order $n$ is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that $n$ is cyclic precisely when $gcd(n,phi(n))=1$. With $C(x)$ denoting the count of cyclic $nle x$, ErdH{o}s prove
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G