ترغب بنشر مسار تعليمي؟ اضغط هنا

Nematic topological semimetal and insulator in magic angle bilayer graphene at charge neutrality

113   0   0.0 ( 0 )
 نشر من قبل Shang Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a fully self-consistent Hartree-Fock calculation of interaction effects on the Moire flat bands of twisted bilayer graphene, assuming that valley U(1) symmetry is respected. We use realistic band structures and interactions and focus on the charge neutrality point, where experiments have variously reported either insulating or semimetallic behavior. Restricting the search to orders for which the valley U(1) symmetry remains unbroken, we find three types of self-consistent solutions with competitive ground state energy (i) insulators that break $C_2 {mathcal T}$ symmetry, including valley Chern insulators (ii) spin or valley polarized insulators and (iii) rotation $C_3$ symmetry breaking semimetals whose gaplessness is protected by the topology of the Moire flat bands. We find that the relative stability of these states can be tuned by weak strains that break $C_3$ rotation. The nematic semimetal and also, somewhat unexpectedly, the $C_2 {mathcal T}$ breaking insulators, are stabilized by weak strain. These ground states may be related to the semi-metallic and insulating behaviors seen at charge neutrality, and the sample variability of their observation. We also compare with the results of STM measurements near charge neutrality.



قيم البحث

اقرأ أيضاً

We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their e nergies and symmetry quantum numbers in detail. To study the soft mode spectra, we employ time dependent Hartree-Fock whose results are reproduced analytically via an effective sigma model description. We find two different types of low-energy modes - (i) approximate Goldstone modes associated with breaking an enlarged U(4)$times$U(4) symmetry and, surprisingly, a set of (ii) nematic modes with non-zero angular momentum under three-fold rotation. The modes of type (i) include true gapless Goldstone modes associated with exact symmetries in addition to gapped pseudo-Goldstone modes associated with approximate symmetries. While the modes of type (ii) are always gapped, we show that their gap decreases as the Berry curvature grows more concentrated. For realistic parameter values, the gapped soft modes of both types have comparable gaps of only a few meV, and lie completely inside the mean-field bandgap. The entire set of soft modes emerge as Goldstone modes of a different idealized model in which Berry flux is limited to a solenoid, which enjoys an enlarged U(8) symmetry. Furthermore, we discuss the number of Goldstone modes for each symmetry-broken state, distinguishing the linearly vs quadratically dispersing modes. Finally, we present a general symmetry analysis of the soft modes for all possible insulating Slater determinant states at integer fillings that preserve translation symmetry, independent of the energetic details. The resulting soft mode degeneracies and symmetry quantum numbers provide a fingerprint of the different insulting states enabling their experimental identification from a measurement of their soft modes.
Superconductivity often occurs close to broken-symmetry parent states and is especially common in doped magnetic insulators. When twisted close to a magic relative orientation angle near 1 degree, bilayer graphene has flat moire superlattice miniband s that have emerged as a rich and highly tunable source of strong correlation physics, notably the appearance of superconductivity close to interaction-induced insulating states. Here we report on the fabrication of bilayer graphene devices with exceptionally uniform twist angles. We show that the reduction in twist angle disorder reveals insulating states at all integer occupancies of the four-fold spin/valley degenerate flat conduction and valence bands, i.e. at moire band filling factors nu = 0, +(-) 1, +(-) 2, +(-) 3, and superconductivity below critical temperatures as high as 3 K close to - 2 filling. We also observe three new superconducting domes at much lower temperatures close to the nu = 0 and nu = +(-) 1 insulating states. Interestingly, at nu = +(-) 1 we find states with non-zero Chern numbers. For nu = - 1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field above 3.6 tesla is applied, consistent with a field driven phase transition. Our study shows that symmetry-broken states, interaction driven insulators, and superconducting domes are common across the entire moire flat bands, including near charge neutrality.
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great deal of interest, sparked by the discovery of correlated insulating and superconducting states, for twist angle $theta$ close to a so-called magic angle $approx 1.1{deg}$. In this work, we unveil, via near-field optical microscopy, a collective plasmon mode in charge-neutral TBG near the magic angle, which is dramatically different from the ordinary single-layer graphene intraband plasmon. In selected regions of our samples, we find a gapped collective mode with linear dispersion, akin to the bulk magnetoplasmons of a two-dimensional (2D) electron gas. We interpret these as interband plasmons and associate those with the optical transitions between quasi-localized states originating from the moire superlattice. Surprisingly, we find a higher plasmon group velocity than expected, which implies an enhanced strength of the corresponding optical transition. This points to a weaker interlayer coupling in the AA regions. These intriguing optical properties offer new insights, complementary to other techniques, on the carrier dynamics in this novel quantum electron system.
Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron-electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when $ pm 1, pm 2, pm 3$ e lectrons occupy each moir e unit cell and lead to the formation of correlated insulating, superconducting and ferromagnetic phases. While some phases have been shown to carry a non-zero Chern number, the local microscopic properties and topological character of many other phases remain elusive. Here we introduce a set of novel techniques hinging on scanning tunneling microscopy (STM) to map out topological phases in MATBG that emerge in finite magnetic field. By following the evolution of the local density of states (LDOS) at the Fermi level with electrostatic doping and magnetic field, we visualize a local Landau fan diagram that enables us to directly assign Chern numbers to all observed phases. We uncover the existence of six topological phases emanating from integer fillings in finite fields and whose origin relates to a cascade of symmetry-breaking transitions driven by correlations. The spatially resolved and electron-density-tuned LDOS maps further reveal that these topological phases can form only in a small range of twist angles around the magic-angle value. Both the microscopic origin and extreme sensitivity to twist angle differentiate these topological phases from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions and exhibits an unexpected splitting between zero Landau levels that can be as large as ${sim },3-5$ meV. Our results show how strong electronic interactions affect the band structure of MATBG and lead to the formation of correlation-enabled topological phases.
Spontaneous symmetry breaking plays a pivotal role in many areas of physics, engendering a variety of excitations from sound modes in solids to pions in nuclear physics. Equally important excitations are solitons, nonlinear configurations of the symm etry breaking field, which can enjoy exceptional stability as in the Skyrme model of nuclear forces. Here we argue that similar models may describe magic angle graphene, a remarkable new material . When the angle between two sheets of graphene is near the magic angle of $sim 1^circ$, insulating behavior is observed, which gives way to superconductivity on changing the electron density. We propose a unifying description of both the order underlying the insulator as well as the superconductor. While the symmetry breaking condensate leads to the ordered phase, topological solitons in the condensate - skyrmions - are shown to be bosons that carry an electric charge of 2e. Condensation of skyrmions leads to a superconductor whose pairing strength, symmetry and other properties are inferred. More generally, we show how topological textures can mitigate Coulomb repulsion to pair electrons and provide a new route to superconductivity. Our mechanism potentially applies to much wider class of systems but crucially invokes certain key ingredient such as inversion symmetry present in magic angle graphene. We discuss how these insights not only clarify why certain correlated moire materials do not superconduct, they also point to promising new platforms where robust superconductivity is anticipated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا