ﻻ يوجد ملخص باللغة العربية
Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error $epsilon_m$ for a $^{43}$Ca$^+$ trapped-ion qubit in the small-error regime and find $epsilon_m<10^{-4}$ for storage times $tlesssim50,mbox{ms}$. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at $t=1,mbox{ms}$ we measure $epsilon_m=1.2(7)times10^{-6}$, around ten times smaller than that extrapolated from the $T_{2}^{ast}$ time, and limited by instability of the atomic clock reference used to benchmark the qubit.
We report observations of the linear polarisation of a sample of 50 nearby southern bright stars measured to a median sensitivity of $sim$4.4 $times 10^{-6}$. We find larger polarisations and more highly polarised stars than in the previous PlanetPol
Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this level of tolerance, numerically st
In the quantum anomalous Hall effect, quantized Hall resistance and vanishing longitudinal resistivity are predicted to result from the presence of dissipationless, chiral edge states and an insulating 2D bulk, without requiring an external magnetic
The part-per-million measurement of the positive muon lifetime and determination of the Fermi constant by the MuLan experiment at the Paul Scherrer Institute is reviewed. The experiment used an innovative, time-structured, surface muon beam and a nea
Reducing measurement errors in multi-qubit quantum devices is critical for performing any quantum algorithm. Here we show how to mitigate measurement errors by a classical post-processing of the measured outcomes. Our techniques apply to any experime