ترغب بنشر مسار تعليمي؟ اضغط هنا

The Pressure and Temperature Limits of Likely Rocky Exoplanets

262   0   0.0 ( 0 )
 نشر من قبل Cayman Unterborn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interior composition of exoplanets is not observable, limiting our direct knowledge of their structure, composition, and dynamics. Recently described observational trends suggest that rocky exoplanets, that is, planets without significant volatile envelopes, are likely limited to $<$1.5 Earth radii. We show that given this likely upper limit in the radii of purely-rocky super-Earth exoplanets, the maximum expected core-mantle boundary pressure and adiabatic temperature is relatively moderate, 630 GPa and 5000 K, while the maximum central core pressure varies between 1.5 and 2.5 TPa. We further find that for planets with radii less than 1.5 Earth radii, core-mantle boundary pressure and adiabatic temperature are mostly a function of planet radius and insensitive to planet structure. The pressures and temperatures of rocky exoplanet interiors, then, are less than those explored in recent shock-compression experiments, ab-initio calculations, and planetary dynamical studies. We further show that the extrapolation of relevant equations of state does not introduce significant uncertainties in the structural models of these planets. Mass-radius models are more sensitive to bulk composition than any uncertainty in the equation of state, even when extrapolated to TPa pressures.



قيم البحث

اقرأ أيضاً

To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Ea rths interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron snow will condense near or at the top of these cores, and the net transfer of latent heat upwards will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short period orbits, and dynamos in the ionic conducting layers of ocean planets with ~10% mass in an upper mantle of water (ice).
211 - F. Sohl , F. W. Wagner , H. Rauer 2012
Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planets mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.
Data suggest that most rocky exoplanets with orbital period $p$ $<$ 100 d (hot rocky exoplanets) formed as gas-rich sub-Neptunes that subsequently lost most of their envelopes, but whether these rocky exoplanets still have atmospheres is unknown. We identify a pathway by which 1-1.7 $R_{Earth}$ (1-10 $M_{Earth}$) rocky exoplanets with orbital periods of 10-100 days can acquire long-lived 10-2000 bar atmospheres that are H$_2$O-dominated, with mean molecular weight $>$10. These atmospheres form during the planets evolution from sub-Neptunes into rocky exoplanets. H$_2$O that is made by reduction of iron oxides in the silicate magma is highly soluble in the magma, forming a dissolved reservoir that is protected from loss so long as the H$_2$-dominated atmosphere persists. The large size of the dissolved reservoir buffers the H$_2$O atmosphere against loss after the H$_2$ has dispersed. Within our model, a long-lived, water-dominated atmosphere is a common outcome for efficient interaction between a nebula-derived atmosphere (peak atmosphere mass fraction 0.1-0.6 wt%) and oxidized magma ($>$5 wt% FeO), followed by atmospheric loss. This idea predicts that most rocky planets that have orbital periods of 10-100 days and that have radii within 0.1-0.2 $R_{Earth}$ of the lower edge of the radius valley still retain H$_2$O atmospheres. This prediction is imminently testable with JWST and has implications for the interpretation of data for transiting super-Earths.
In recent years, numerical models that were developed for Earth have been adapted to study exoplanetary climates to understand how the broad range of possible exoplanetary properties affects their climate state. The recent discovery and upcoming char acterization of nearby rocky exoplanets opens an avenue toward understanding the processes that shape planetary climates and lead to the persistent habitability of Earth. In this review, we summarize recent advances in understanding the climate of rocky exoplanets, including their atmospheric structure, chemistry, evolution, and atmospheric and oceanic circulation. We describe current and upcoming astronomical observations that will constrain the climate of rocky exoplanets and describe how modeling tools will both inform and interpret future observations.
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find a carbon atom. These two tasks can be accomplished via photochemistry, lightning, impacts, or volcanism. The key requirements for producing appreciable amounts of HCN are the free availability of N$_2$ and a local carbon to oxygen ratio of C/O $geq 1$. We discuss the chemical mechanisms by which HCN can be formed and destroyed on rocky exoplanets with Earth-like N$_2$ content and surface water inventories, varying the oxidation state of the dominant carbon-containing atmospheric species. HCN is most readily produced in an atmosphere rich in methane (CH$_4$) or acetylene (C$_2$H$_2$), but can also be produced in significant amounts ($> 1$ ppm) within CO-dominated atmospheres. Methane is not necessary for the production of HCN. We show how destruction of HCN in a CO$_2$-rich atmosphere depends critically on the poorly-constrained energetic barrier for the reaction of HCN with atomic oxygen. We discuss the implications of our results for detecting photochemically produced HCN, for concentrating HCN on the planets surface, and its importance for prebiotic chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا