ﻻ يوجد ملخص باللغة العربية
Transfer entropy (TE) was introduced by Schreiber in 2000 as a measurement of the predictive capacity of one stochastic process with respect to another. Originally stated for discrete time processes, we expand the theory in line with recent work of Spinney, Prokopenko, and Lizier to define TE for stochastic processes indexed over a compact interval taking values in a Polish state space. We provide a definition for continuous time TE using the Radon-Nikodym Theorem, random measures, and projective limits of probability spaces. As our main result, we provide necessary and sufficient conditions to obtain this definition as a limit of discrete time TE, as well as illustrate its application via an example involving Poisson point processes. As a derivative of continuous time TE, we also define the transfer entropy rate between two processes and show that (under mild assumptions) their stationarity implies a constant rate. We also investigate TE between homogeneous Markov jump processes and discuss some open problems and possible future directions.
We propose a new estimator to measure directed dependencies in time series. The dimensionality of data is first reduced using a new non-uniform embedding technique, where the variables are ranked according to a weighted sum of the amount of new infor
We establish a discrete analog of the Renyi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within log e of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephar
The forward prediction problem for a binary time series ${X_n}_{n=0}^{infty}$ is to estimate the probability that $X_{n+1}=1$ based on the observations $X_i$, $0le ile n$ without prior knowledge of the distribution of the process ${X_n}$. It is known
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of $n$ independ
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer