ﻻ يوجد ملخص باللغة العربية
As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth. Here we highlight the risk of space radiation to pharmaceuticals during exploration spaceflight, identifying the limitations of current understanding. We further seek to identify ways in which these limitations could be addressed through dedicated research efforts aimed towards the rapid development of an effective pharmacy for future spaceflight endeavors.
Processes that proceed reliably from a variety of initial conditions to a unique final form, regardless of moderately changing conditions, are of obvious importance in biophysics. Protein folding is a case in point. We show that the action principle
Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of
For group-living animals, reaching consensus to stay cohesive is crucial for their fitness, particularly when collective motion starts and stops. Understanding the decision-making at individual and collective levels upon sudden disturbances is centra
Bacteriorhodopsin (bR) is a light-driven proton pump. We use time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultra
We discuss a polymer model for the 3D organization of human chromosomes. A chromosome is represented by a string of beads, with each bead being colored according to 1D bioinformatic data (e.g., chromatin state, histone modification, GC content). Indi