ترغب بنشر مسار تعليمي؟ اضغط هنا

Limitations in Predicting Radiation-Induced Pharmaceutical Instability during Long-Duration Spaceflight

247   0   0.0 ( 0 )
 نشر من قبل Jeffery Chancellor
 تاريخ النشر 2019
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth. Here we highlight the risk of space radiation to pharmaceuticals during exploration spaceflight, identifying the limitations of current understanding. We further seek to identify ways in which these limitations could be addressed through dedicated research efforts aimed towards the rapid development of an effective pharmacy for future spaceflight endeavors.

قيم البحث

اقرأ أيضاً

235 - Walter Simmons 2013
Processes that proceed reliably from a variety of initial conditions to a unique final form, regardless of moderately changing conditions, are of obvious importance in biophysics. Protein folding is a case in point. We show that the action principle can be applied directly to study the stability of biological processes. The action principle in classical physics starts with the first variation of the action and leads immediately to the equations of motion. The second variation of the action leads in a natural way to powerful theorems that provide quantitative treatment of stability and focusing and also explain how some very complex processes can behave as though some seemingly important forces drop out. We first apply these ideas to the non-equilibrium states involved in two-state folding. We treat torsional waves and use the action principle to talk about critical points in the dynamics. For some proteins the theory resembles TST. We reach several quantitative and qualitative conclusions. Besides giving an explanation of why TST often works in folding, we find that the apparent smoothness of the energy funnel is a natural consequence of the putative critical points in the dynamics. These ideas also explain why biological proteins fold to unique states and random polymers do not. The insensitivity to perturbations which follows from the presence of critical points explains how folding to a unique shape occurs in the presence of dilute denaturing agents in spite of the fact that those agents disrupt the folded structure of the native state. This paper contributes to the theoretical armamentarium by directing attention to the logical progression from first physical principles to the stability theorems related to catastrophe theory as applied to folding. This can potentially have the same success in biophysics as it has enjoyed in optics.
Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 $pm$ 3) x 10$^{-3}$ mu m$^2$/s, (mean $pm$ SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 $pm$ 0.10 mu m/s (mean $pm$ SD) mu m/s and an average applied force of 0.07 $pm$ 0.05 pN (mean $pm$ SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 $pm$ 35) x10$^{-3}$ mu m$^2$/s (mean $pm$ SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.
For group-living animals, reaching consensus to stay cohesive is crucial for their fitness, particularly when collective motion starts and stops. Understanding the decision-making at individual and collective levels upon sudden disturbances is centra l in the study of collective animal behavior, and concerns the broader question of how information is distributed and evaluated in groups. Despite the relevance of the problem, well-controlled experimental studies that quantify the collective response of groups facing disruptive events are lacking. Here we study the behavior of groups of uninformed individuals subject to the departure and stop of a trained conspecific within small-sized groups. We find that the groups reach an effective consensus: either all uninformed individuals follow the trained one (and collective motion occurs) or none does it. Combining experiments and a simple mathematical model we show that the observed phenomena results from the interplay between simple mimetic rules and the characteristic duration of the stimulus, here, the time the trained individual is moving away. The proposed mechanism strongly depends on group size, as observed in the experiments, and though group splitting can occur, the most likely outcome is always a coherent collective group response (consensus). The prevalence of a consensus is expected even if the groups of naives face conflicting information, e.g. if groups contain two subgroups of trained individuals, one trained to stay and one trained to leave. Our results indicate that collective decision-making and consensus in (small) animal groups are likely to be self-organized phenomena that do not involve concertation or even communication among the group members.
Bacteriorhodopsin (bR) is a light-driven proton pump. We use time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultra fast spectroscopy allow identifying a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multi-photon effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.
We discuss a polymer model for the 3D organization of human chromosomes. A chromosome is represented by a string of beads, with each bead being colored according to 1D bioinformatic data (e.g., chromatin state, histone modification, GC content). Indi vidual spheres (representing bi- and multi-valent transcription factors) can bind reversibly and selectively to beads with the appropriate color. During molecular dynamics simulations, the factors bind, and the string spontaneously folds into loops, rosettes, and topologically-associating domains (TADs). This organization occurs in the absence of any specified interactions between distant DNA segments, or between transcription factors. A comparison with Hi-C data shows that simulations predict the location of most boundaries between TADs correctly. The model is fitting-free in the sense that it does not use Hi-C data as an input; consequently, one of its strengths is that it can -- in principle -- be used to predict the 3D organization of any region of interest, or whole chromosome, in a given organism, or cell line, in the absence of existing Hi-C data. We discuss how this simple model might be refined to include more transcription factors and binding sites, and to correctly predict contacts between convergent CTCF binding sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا