ترغب بنشر مسار تعليمي؟ اضغط هنا

What is the Minimal Systemic Risk in Financial Exposure Networks?

205   0   0.0 ( 0 )
 نشر من قبل Stefan Thurner
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Management of systemic risk in financial markets is traditionally associated with setting (higher) capital requirements for market participants. There are indications that while equity ratios have been increased massively since the financial crisis, systemic risk levels might not have lowered, but even increased. It has been shown that systemic risk is to a large extent related to the underlying network topology of financial exposures. A natural question arising is how much systemic risk can be eliminated by optimally rearranging these networks and without increasing capital requirements. Overlapping portfolios with minimized systemic risk which provide the same market functionality as empirical ones have been studied by [pichler2018]. Here we propose a similar method for direct exposure networks, and apply it to cross-sectional interbank loan networks, consisting of 10 quarterly observations of the Austrian interbank market. We show that the suggested framework rearranges the network topology, such that systemic risk is reduced by a factor of approximately 3.5, and leaves the relevant economic features of the optimized network and its agents unchanged. The presented optimization procedure is not intended to actually re-configure interbank markets, but to demonstrate the huge potential for systemic risk management through rearranging exposure networks, in contrast to increasing capital requirements that were shown to have only marginal effects on systemic risk [poledna2017]. Ways to actually incentivize a self-organized formation toward optimal network configurations were introduced in [thurner2013] and [poledna2016]. For regulatory policies concerning financial market stability the knowledge of minimal systemic risk for a given economic environment can serve as a benchmark for monitoring actual systemic risk in markets.



قيم البحث

اقرأ أيضاً

Much research has been conducted arguing that tipping points at which complex systems experience phase transitions are difficult to identify. To test the existence of tipping points in financial markets, based on the alternating offer strategic model we propose a network of bargaining agents who mutually either cooperate or where the feedback mechanism between trading and price dynamics is driven by an external hidden variable R that quantifies the degree of market overpricing. Due to the feedback mechanism, R fluctuates and oscillates over time, and thus periods when the market is underpriced and overpriced occur repeatedly. As the market becomes overpriced, bubbles are created that ultimately burst in a market crash. The probability that the index will drop in the next year exhibits a strong hysteresis behavior from which we calculate the tipping point. The probability distribution function of R has a bimodal shape characteristic of small systems near the tipping point. By examining the S&P500 index we illustrate the applicability of the model and demonstate that the financial data exhibits a hysteresis and a tipping point that agree with the model predictions. We report a cointegration between the returns of the S&P 500 index and its intrinsic value.
We consider vector fixed point (FP) equations in large dimensional spaces involving random variables, and study their realization-wise solutions. We have an underlying directed random graph, that defines the connections between various components of the FP equations. Existence of an edge between nodes i, j implies the i th FP equation depends on the j th component. We consider a special case where any component of the FP equation depends upon an appropriate aggregate of that of the random neighbor components. We obtain finite dimensional limit FP equations (in a much smaller dimensional space), whose solutions approximate the solution of the random FP equations for almost all realizations, in the asymptotic limit (number of components increase). Our techniques are different from the traditional mean-field methods, which deal with stochastic FP equations in the space of distributions to describe the stationary distributions of the systems. In contrast our focus is on realization-wise FP solutions. We apply the results to study systemic risk in a large financial heterogeneous network with many small institutions and one big institution, and demonstrate some interesting phenomenon.
We propose the Hawkes flocking model that assesses systemic risk in high-frequency processes at the two perspectives -- endogeneity and interactivity. We examine the futures markets of WTI crude oil and gasoline for the past decade, and perform a com parative analysis with conditional value-at-risk as a benchmark measure. In terms of high-frequency structure, we derive the empirical findings. The endogenous systemic risk in WTI was significantly higher than that in gasoline, and the level at which gasoline affects WTI was constantly higher than in the opposite case. Moreover, although the relative influences degree was asymmetric, its difference has gradually reduced.
Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial c ontagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlapping portfolios. In this work we quantify systemic risk from indirect interconnections between financial institutions. Having complete information of security holdings of major Mexican financial intermediaries and the ability to uniquely identify securities in their portfolios, allows us to represent the Mexican financial system as a bipartite network of securities and financial institutions. This makes it possible to quantify systemic risk arising from overlapping portfolios. We show that focusing only on direct exposures underestimates total systemic risk levels by up to 50%. By representing the financial system as a multi-layer network of direct exposures (default contagion) and indirect exposures (overlapping portfolios) we estimate the mutual influence of different channels of contagion. The method presented here is the first objective data-driven quantification of systemic risk on national scales that includes overlapping portfolios.
Financial regulatory agencies are struggling to manage the systemic risks attributed to negative economic shocks. Preventive interventions are prominent to eliminate the risks and help to build a more resilient financial system. Although tremendous e fforts have been made to measure multi-risk severity levels, understand the contagion behaviors and other risk management problems, there still lacks a theoretical framework revealing what and how regulatory intervention measurements can mitigate systemic risk. Here we demonstrate regshock, a practical visual analytical approach to support the exploration and evaluation of financial regulation measurements. We propose risk-island, an unprecedented risk-centered visualization algorithm to help uncover the risk patterns while preserving the topology of financial networks. We further propose regshock, a novel visual exploration and assessment approach based on the simulation-intervention-evaluation analysis loop, to provide a heuristic surgical intervention capability for systemic risk mitigation. We evaluate our approach through extensive case studies and expert reviews. To our knowledge, this is the first practical systemic method for the financial network intervention and risk mitigation problem; our validated approach potentially improves the risk management and control capabilities of financial experts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا