ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Occultations by Transneptunian objects: from Predictions to Observations and Prospects for the Future

56   0   0.0 ( 0 )
 نشر من قبل Pablo Santos-Sanz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In terms of scientific output, the best way to study solar system bodies is sending spacecraft to make in-situ measurements or to observe at close distance. Probably, the second best means to learn about important physical properties of solar system objects is through stellar occultations. By combining occultation observations from several sites, size and shape can be derived with kilometric accuracy. Also, atmospheric properties can be derived if the body has an atmosphere. Furthermore, the technique can detect rings and even satellites (although rarely) around the main body. Except for the very special cases of Pluto and Charon, stellar occultations by Transneptunian Objects (TNOs) had never been observed until October 2009. This was because the ephemeris of the TNOs have much larger uncertainties than their angular diameters (typically of the order of ~10 milliarcsecond) and also because stellar catalogs were not accurate to the milliarcsecond level. Despite the difficulties, at the time of this writing, 43 occultations by 22 different Trans-Neptunian Objects, and 17 occultations by 5 Centaurs have been detected thanks to the efforts of several teams. Due to the complications of accurately predicting and observing these events, most of the successes have been achieved through wide international collaboration, which is a key issue to succeed in observing stellar occultations by TNOs. Multichord occultations are typically detected at a rate of ~3 per year on average, whereas the majority of the observed occultations are single-chord detections, which means that only one site detects the occultation. In these cases, no tight constraints on size and shape can be derived from those observations alone. Here we review most of the aspects involved in the complex process to successfully observe occultations, and present some of the lessons learned.

قيم البحث

اقرأ أيضاً

We present the results of photometric observations of six Transneptunian objects and three Centaurs, estimations of their rotational periods and corresponding amplitudes. For six of them we present also lower limits of density values. All observation s were made using 3.6-m TNG telescope (La Palma, Spain). For four objects -- (148975) 2001 XA255, (281371) 2008 FC76, (315898) 2008 QD4, and 2008 CT190 -- the estimation of short-term variability was made for the first time. We confirm rotation period values for two objects: (55636) 2002 TX300 and (202421) 2005 UQ513, and improve the precision of previously reported rotational period values for other three -- (120178) 2003 OP32, (145452) 2005 RN43, (444030) 2004 NT33 -- by using both our and literature data. We also discuss here that small distant bodies, similarly to asteroids in the Main belt, tend to have double-peaked rotational periods caused by the elongated shape rather than surface albedo variations.
274 - F. L. Rommel 2020
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these small bod ies and has presented exciting results. These observations can provide precise profiles of the involved body, allowing an accurate determination of its size and shape. The goal is to show that even single-chord detections of TNOs allow us to measure their milliarcsecond astrometric positions in the reference frame of the Gaia second data release (DR2). Accurated ephemerides can then be generated, allowing predictions of stellar occultations with much higher reliability. We analyzed data from stellar occultations to obtain astrometric positions of the involved bodies. The events published before the Gaia era were updated so that the Gaia DR2 catalog is the reference. Previously determined sizes were used to calculate the position of the object center and its corresponding error with respect to the detected chord and the International Celestial Reference System (ICRS) propagated Gaia DR2 star position. We derive 37 precise astrometric positions for 19 TNOs and 4 Centaurs. Twenty-one of these events are presented here for the first time. Although about 68% of our results are based on single-chord detection, most have intrinsic precision at the submilliarcsecond level. Lower limits on the diameter and shape constraints for a few bodies are also presented as valuable byproducts. Using the Gaia DR2 catalog, we show that even a single detection of a stellar occultation allows improving the object ephemeris significantly, which in turn enables predicting a future stellar occultation with high accuracy. Observational campaigns can be efficiently organized with this help, and may provide a full physical characterization of the involved object.
101 - P. Santos-Sanz 2015
In this paper we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of solar system bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWSTs unique capabilities. We identify several possible JWST occultation events by minor bodies and rings, and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a by-product of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWSTs orbit and instrumentation that should be taken into account during JWSTs development.
We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized transneptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher a lbedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper belt region and beyond are confined to the bright-red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark-neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system.
Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklos sy stem in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the $pm 3.3$ km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from $sim 5$ to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2Rs edges is available. A 1$sigma$ upper limit of $sim 20$ m is derived for the equivalent width of narrow (physical width <4 km) rings up to distances of 12,000 km, counted in the ring plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا