ترغب بنشر مسار تعليمي؟ اضغط هنا

Hardy spaces on homogeneous groups and Littlewood-Paley functions

90   0   0.0 ( 0 )
 نشر من قبل Shuichi Sato
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Shuichi Sato




اسأل ChatGPT حول البحث

We establish a characterization of the Hardy spaces on the homogeneous groups in terms of the Littlewood-Paley functions. The proof is based on vector-valued inequalities shown by applying the Peetre maximal function.

قيم البحث

اقرأ أيضاً

106 - Shuichi Sato 2016
We consider Littlewood-Paley functions associated with non-isotropic dilations. We prove that they can be used to characterize the parabolic Hardy spaces of Calder{o}n-Torchinsky.
78 - Shuichi Sato 2016
We consider certain Littlewood-Paley operators and prove characterization of some function spaces in terms of those operators. When treating weighted Lebesgue spaces, a generalization to weighted spaces will be made for Hormanders theorem on the inve rtibility of homogeneous Fourier multipliers. Also, applications to the theory of Sobolev spaces will be given.
176 - Guozhen Lu , Qiaohua Yang 2019
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev -Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).
93 - Quanhua Xu 2021
Let ${mathbb{P}_t}_{t>0}$ be the classical Poisson semigroup on $mathbb{R}^d$ and $G^{mathbb{P}}$ the associated Littlewood-Paley $g$-function operator: $$G^{mathbb{P}}(f)=Big(int_0^infty t|frac{partial}{partial t} mathbb{P}_t(f)|^2dtBig)^{frac12}. $$ The classical Littlewood-Paley $g$-function inequality asserts that for any $1<p<infty$ there exist two positive constants $mathsf{L}^{mathbb{P}}_{t, p}$ and $mathsf{L}^{mathbb{P}}_{c, p}$ such that $$ big(mathsf{L}^{mathbb{P}}_{t, p}big)^{-1}big|fbig|_{p}le big|G^{mathbb{P}}(f)big|_{p} le mathsf{L}^{mathbb{P}}_{c,p}big|fbig|_{p},,quad fin L_p(mathbb{R}^d). $$ We determine the optimal orders of magnitude on $p$ of these constants as $pto1$ and $ptoinfty$. We also consider similar problems for more general test functions in place of the Poisson kernel. The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too. Let $Delta$ be the partition of $mathbb{R}^d$ into dyadic rectangles and $S_R$ the partial sum operator associated to $R$. The dyadic Littlewood-Paley square function of $f$ is $$S^Delta(f)=Big(sum_{RinDelta} |S_R(f)|^2Big)^{frac12}.$$ For $1<p<infty$ there exist two positive constants $mathsf{L}^{Delta}_{c,p, d}$ and $ mathsf{L}^{Delta}_{t,p, d}$ such that $$ big(mathsf{L}^{Delta}_{t,p, d}big)^{-1}big|fbig|_{p}le big|S^Delta(f)big|_{p}le mathsf{L}^{Delta}_{c,p, d}big|fbig|_{p},quad fin L_p(mathbb{R}^d). $$ We show that $$mathsf{L}^{Delta}_{t,p, d}approx_d (mathsf{L}^{Delta}_{t,p, 1})^d;text{ and }; mathsf{L}^{Delta}_{c,p, d}approx_d (mathsf{L}^{Delta}_{c,p, 1})^d.$$ All the previous results can be equally formulated for the $d$-torus $mathbb{T}^d$. We prove a de Leeuw type transference principle in the vector-valued setting.
We establish a connection between the function space BMO and the theory of quasisymmetric mappings on emph{spaces of homogeneous type} $widetilde{X} :=(X,rho,mu)$. The connection is that the logarithm of the generalised Jacobian of an $eta$-quasisymm etric mapping $f: widetilde{X} rightarrow widetilde{X}$ is always in $rm{BMO}(widetilde{X})$. In the course of proving this result, we first show that on $widetilde{X}$, the logarithm of a reverse-H{o}lder weight $w$ is in $rm{BMO}(widetilde{X})$, and that the above-mentioned connection holds on metric measure spaces $widehat{X} :=(X,d,mu)$. Furthermore, we construct a large class of spaces $(X,rho,mu)$ to which our results apply. Among the key ingredients of the proofs are suitable generalisations to $(X,rho,mu)$ from the Euclidean or metric measure space settings of the Calder{o}n--Zygmund decomposition, the Vitali Covering Theorem, the Radon--Nikodym Theorem, a lemma which controls the distortion of sets under an $eta$-quasisymmetric mapping, and a result of Heinonen and Koskela which shows that the volume derivative of an $eta$-quasisymmetric mapping is a reverse-H{o}lder weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا