ﻻ يوجد ملخص باللغة العربية
High-energy neutrinos are expected to be produced by the interaction of accelerated particles near the acceleration sites. For this reason, it is interesting to search for correlation in the arrival directions of ultra-high energy cosmic rays (UHECRs) and HE neutrinos. We present here the results of a search for correlations between UHECR events measured by the Pierre Auger Observatory and Telescope Array and high-energy neutrino candidate events from IceCube and ANTARES. We perform a cross-correlation analysis, where the angular separation between the arrival directions of UHECRs and neutrinos is scanned. When comparing the results with the expectations from a null hypothesis contemplating an isotropic distribution of neutrinos or of UHECR we obtain post-trial p-values of the order of $sim 10^{-2}$.
This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first cons
The arrival directions of cosmic rays detected by the Pierre Auger Observatory (Auger) with energies above 39~EeV were recently reported to correlate with the positions of 23 nearby starburst galaxies (SBGs): in their best-fit model, 9.7% of the cosm
An offline search for a neutrino counterpart to gravitational-wave (GW) events detected during the second observation run (O2) of Advanced-LIGO and Advanced-Virgo performed with ANTARES data is presented. In addition to the search for long tracks ind
On October 1, 2019, the IceCube Collaboration detected a muon track neutrino with high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (
A novel method to analyse the spatial distribution of neutrino candidates recorded with the ANTARES neutrino telescope is introduced, searching for an excess of neutrinos in a region of arbitrary size and shape from any direction in the sky. Techniqu