ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional ferromagnetic CP(N-1) models

76   0   0.0 ( 0 )
 نشر من قبل Ettore Vicari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the critical behavior of three-dimensional ferromagnetic CP(N-1) models, which are characterized by a global U(N) and a local U(1) symmetry. We perform numerical simulations of a lattice model for N=2, 3, and 4. For N=2 we find a critical transition in the Heisenberg O(3) universality class, while for N=3 and 4 the system undergoes a first-order transition. For N=3 the transition is very weak and a clear signature of its discontinuous nature is only observed for sizes L>50. We also determine the critical behavior for a large class of lattice Hamiltonians in the large-N limit. The results confirm the existence of a stable large-N CP(N-1) fixed point. However, this evidence contradicts the standard picture obtained in the Landau-Ginzburg-Wilson (LGW) framework using a gauge-invariant order parameter: the presence of a cubic term in the effective LGW field theory for any N>2 would usually be taken as an indication that these models generically undergo first-order transitions.

قيم البحث

اقرأ أيضاً

We investigate the low-temperature behavior of two-dimensional (2D) RP$^{N-1}$ models, characterized by a global O($N$) symmetry and a local ${mathbb Z}_2$ symmetry. For $N=3$ we perform large-scale simulations of four different 2D lattice models: tw o standard lattice models and two different constrained models. We also consider a constrained mixed O(3)-RP$^2$ model for values of the parameters such that vector correlations are always disordered. We find that all these models show the same finite-size scaling (FSS) behavior, and therefore belong to the same universality class. However, these FSS curves differ from those computed in the 2D O(3) $sigma$ model, suggesting the existence of a distinct 2D RP$^2$ universality class. We also performed simulations for $N=4$, and the corresponding FSS results also support the existence of an RP$^3$ universality class, different from the O(4) one.
We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge q, so that they have local U(1) and global SU(N) s ymmetries. We discuss the dependence of the phase diagram, and the nature of the phase transitions, on the charge q of the scalar field and the number N>1 of components. We argue that the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement/deconfinement of external charge-one particles. The transition lines separating the different phases show different features, which also depend on the number N of components. Therefore, the phase diagram of higher-charge models substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for doubly-charged unit-length scalar fields with small and large number of components, i.e. N=2 and N=25.
We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the und erlying field theory. The product of the surface tension and the correlation length yields the particle density along the string whose propagation spans the interface. We also determine the order parameter and energy density profiles across the interface, and show that they are in complete agreement with Monte Carlo simulations that we perform.
We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.
We analyze the two-dimensional CP(N-1) sigma model defined on a finite space interval L, with various boundary conditions, in the large N limit. With the Dirichlet boundary condition at the both ends, we show that the system has a unique phase, which smoothly approaches in the large L limit the standard 2D CP(N-1) sigma model in confinement phase, with a constant mass generated for the n(i) fields. We study the full functional saddle-point equations for finite L, and solve them numerically. The latter reduces to the well-known gap equation in the large L limit. It is found that the solution satisfies actually both the Dirichlet and Neumann conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا